Citation: Hai Man, Guo Li-Na, Wang Le, Duan Xin-Hua. Visible Light Promoted Ketoalkylation of Quinoxaline-2(1H)-ones via Oxidative Ring-Opening of Cycloalkanols[J]. Acta Chimica Sinica, ;2019, 77(9): 895-900. doi: 10.6023/A19040155 shu

Visible Light Promoted Ketoalkylation of Quinoxaline-2(1H)-ones via Oxidative Ring-Opening of Cycloalkanols

  • Corresponding author: Duan Xin-Hua, duanxh@xjtu.edu.cn
  • Received Date: 30 April 2019
    Available Online: 21 September 2019

    Fund Project: Project supported by the Natural Science Foundation in Shaanxi Province (No. 2019JM-299)the Natural Science Foundation in Shaanxi Province 2019JM-299

Figures(4)

  • Substituted quinoxalin-2(1H)-ones represent an important class of fused heterocyclic compounds which are existing in numerous bioactive natural products, pharmaceuticals, and functional materials. As a result, there are many methods for the synthesis of this heterocyclic compounds over the past several years. In this context, the direct C-H functionalization of quinoxalin-2(1H)-ones have proved to be an effective protocol to diverse heterocycles, such as radical C(3)-H arylation, phosphonation, amination, and acylation of quinoxalin-2(1H)-ones. However, the direct C-H alkylation of quinoxalin-2(1H)-ones is still rare. Because of their importance, it is desirable to introduce alkyl substituents, especially those bearing functional groups, at the 3-position of quinoxalin-2(1H)-ones, which would probably promote their applications in new drug discovery and development. Thus, this article reports a visible light promoted C(3)-ketoalkylation of quinoxaline-2(1H)-ones via oxidative ring-opening of cycloalkanols. At room temperature, the reaction is carried out by using cycloalkanols as the ketoalkylating agent and potassium persulfate as oxidizing agent in a solution of methanol and water (V:V=1:2) for 16 h upon visible light irradiation. A variety of keto-functionalized alkyl moieties with different chain length have been successfully incorporated into the C(3)-position of quinoxalin-2(1H)-ones. Thus, the procedure provides a greener, environmentally friendly and simple method for the synthesis of quinoxalin-2(1H)-one derivatives. A representative procedure for this reaction is given as follows. An oven-dried quartz reaction tube (10 mL) equipped with a magnetic stir bar was charged with K2S2O8 (2.0 equiv., 0.4 mmol), quinoxalin-2(1H)-one 1 (1.0 equiv., 0.2 mmol) and cycloalkanol 2 (1.5 equiv., 0.3 mmol). Then, the tube was evacuated and backfilled with nitrogen (three times). Subsequently, a solution of 1.3 mL of H2O and 0.7 mL of MeOH were added under nitrogen. Then the reaction tube was sealed and was irradiated under blue light at room temperature for 16 h. After completion of the reaction, ethyl acetate was added to the reaction mixture, and washed with brine (10 mL), dried over Na2SO4 and concentrated in vacuo. Purification of the crude product by flash chromatography on silica gel (petroleum ether/ethyl acetate, V:V=4:1) affords the corresponding product.
  • 加载中
    1. [1]

      Ries, U. J.; Priepke, H. W. M.; Hauel, N. H.; Handschuh, S.; Mihm, G.; Stassen, J. M.; Wienen, W.; Nar, H. Bioorg. Med. Chem. Lett. 2003, 13, 2297.  doi: 10.1016/S0960-894X(03)00443-8

    2. [2]

      (a) Carta, A.; Piras, S.; Loriga, G.; Paglietti, G. Mini-Rev. Med. Chem. 2006, 6, 1179. (b) Li, X.; Yang, K.-H.; Li, W.-L.; Xu, W.-F. Drugs Future 2006, 31, 979. (c) Hussain, S.; Parveen, S.; Hao, X.; Zhang, S.-Z.; Wang, W.; Qin, X.-Y.; Yang, Y.-C.; Chen, X.; Zhu, S.-J.; Zhu, C.-J.; Ma, B. Eur. J. Med. Chem. 2014, 80, 383.

    3. [3]

      Buratti, W.; Gardini, G. P.; Minisci, F. Tetrahedron 1971, 27, 3655.  doi: 10.1016/S0040-4020(01)97776-2

    4. [4]

      For review, see: (a) Proctor, R. S. J.; Phipps, R. J. Angew. Chem., Int. Ed. 2019, DOI: 10.1002/anie.201900977.For selected examples, see: (b) Huff, C. A.; Cohen, R. D.; Dykstra, K. D.; Streckfuss, E.; DiRocco, D. A.; Krska, S. W. J. Org. Chem. 2016, 81, 6980. (c) Wu, X.-X.; Zhang, H.; Tang, N.-N.; Wu, Z.; Wang, D.-P.; Ji, M.-S.; Xu, Y.; Wang, M.; Zhu, C. Nat. Commun. 2018, 9, 3343. (d) Wu, X.-X.; Wang, M.-Y.; Huan, L.-T.; Wang, D.-P.; Wang, J.-W.; Zhu, C. Angew. Chem., Int. Ed. 2018, 57, 1640.

    5. [5]

      (a) Jiao, J.; Murakami, K.; Itami, K. ACS Catal. 2016, 6, 610. (b) Legnani, L.; Cerai, G. P.; Morandi, B. ACS Catal. 2016, 6, 8162. (c) Zhou, Z.; Ma, Z.; Behnke, N. E.; Gao, H.; Kurti, L. J. Am. Chem. Soc. 2017, 139, 115. (d) Wang, P.; Li, G. C.; Jain, P.; Farmer, M. E.; He, J.; Shen, P. X.; Yu, J. Q. J. Am. Chem. Soc. 2016, 138, 14092.

    6. [6]

    7. [7]

      Gao, M.; Li, Y.; Xie, L.; Chauvin, R.; Cui, X. Org. Biomol. Chem. 2016, 52, 2846.
       

    8. [8]

      Li, Y.; Gao, M.; Wang, L.; Cui, X. Org. Biomol. Chem. 2016, 14, 8428.  doi: 10.1039/C6OB01283C

    9. [9]

      (a) Yuan, J.-W.; Fu, J.-H.; Liu, S.-N.; Xiao, Y.-M.; Mao, P.; Qu, L.-B. Org. Biomol. Chem. 2018, 16, 3203. (b) Xie, L.-Y.; Peng, S.; Fan, T.-G.; Liu, Y.-F.; Sun, M.; Jiang, L.-L.; Wang, X.-X.; Cao, Z.; He, W.-M. Sci. China, Chem. 2019, 62, 460.

    10. [10]

      Hong, G.-F.; Yuan, J.-W.; Fu, J.-H.; Pan, G.-Y.; Wang, Z.-W.; Yang, L.-R.; Xiao, Y.-M.; Mao, P.; Zhang, X.-M. Org. Chem. Front. 2019, 6, 1173.  doi: 10.1039/C9QO00105K

    11. [11]

      (a) Yuan, J.-W.; Fu, J.-H.; Yin, J.-H.; Dong, Z.-H.; Xiao, Y.-M.; Mao, P.; Qu, L.-B. Org. Chem. Front. 2018, 5, 2820. (b) Fu, J.-H.; Yuan, J.-W.; Zhang, Y.; Xiao, Y.-M.; Mao, P.; Diao, X.-Q.; Qu, L.-B. Org. Chem. Front. 2018, 5, 3382.

    12. [12]

      Yang, L.; Gao, P.; Duan, X.-H.; Gu, Y.-R.; Guo, L.-N. Org. Lett. 2018, 20, 1034.  doi: 10.1021/acs.orglett.7b03984

    13. [13]

      Gu, Y.-R.; Duan, X.-H.; Chen, L.; Ma, Z.-Y.; Gao, P.; Guo, L.-N. Org. Lett. 2019, 21, 917.  doi: 10.1021/acs.orglett.8b03865

    14. [14]

      (a) Liu, R.; Huang, Z.-H.; Murray, M. G.; Guo, X.-Y.; Liu, G. J. Med. Chem. 2011, 54, 5747. (b) Qin, X.-Y.; Hao, X.; Han, H.; Zhu, S.-J.; Yang, Y.-C.; Wu, B.-B.; Hussain, S.; Parveen, S.; Jing, C.-J.; Ma, B.; Zhu, C.-J. J. Med. Chem. 2015, 58, 1254.

    15. [15]

      For review, see: (a) Wu, X.-X.; Zhu, C. Chem. Select. 2017, 2, 10678. For selected examples, see: (b) Ren, R.-G.; Zhao, H.-J.; Huan, L.-T.; Zhu, C. Angew. Chem., Int. Ed. 2015, 54, 12692. (c) Zhao, H.-J.; Fan, X.-F.; Yu, J.-J.; Zhu, C. J. Am. Chem. Soc. 2015, 137, 3490. (d) Wang, S.; Guo, L.-N.; Wang, H.; Duan, X.-H. Org. Lett. 2015, 17, 4798. (e) Jia, K.; Zhang, F.; Huang, H.; Chen, Y. J. Am. Chem. Soc. 2016, 138, 1514. (f) Huan, L.-T.; Zhu, C. Org. Chem. Front. 2016, 3, 1467. (g) Guo, L.-N.; Deng, Z.-Q.; Wu, Y.; Hu, J. RSC Adv. 2016, 6, 27000. (h) Ren, R.-G.; Wu, Z.; Xu, Y.; Zhu, C. Angew. Chem., Int. Ed. 2016, 55, 2866. (i) Nikolaev, A.; Legault, C. Y.; Zhang, M.-H.; Orellana, A. Org. Lett. 2018, 20, 796. (j) Zhao, R.; Yao, Y.; Zhu, D.; Chang, D.-H.; Liu, Y.; Shi, L. Org. Lett. 2018, 20, 1228.

    16. [16]

    17. [17]

      For selected examples, see: (a) Minisci, F.; Citterio, A.; Giordano, C. Acc. Chem. Res. 1983, 16, 27. (b) Chinchilla, R.; Najera, C.; Yus, M. Chem. Rev. 2004, 104, 2667. (c) Yin, F.; Wang, X.-S. Org. Lett. 2014, 16, 1128. (d) Wei, W.; Wen, J.-W.; Yang, D.-S.; Du, J.; You, J.-M.; Wang, H. Green Chem. 2014, 16, 2988. (e) Li, Y.-M.; Shen, Y.-H.; Chang, K.-J.; Yang, S.-D. Tetrahedron 2014, 70, 1991. (f) Laha, J. K.; Patel, K. V.; Tummalapalli, K. S. S.; Dayal, N. Chem. Commun. 2016, 52, 10245.

    18. [18]

      (a) Devan, S.; Shah, B.-A. Chem. Commun. 2016, 52, 1490. (b) Zhang, Y.-Q.; Teuscher, K. B.; Ji, H.-T. Chem. Sci. 2016, 7, 2111. (c) Zhao, Y.-T.; Huang, B.-B.; Yang, C.; Xia, W.-J. Org. Lett. 2016, 18, 3326. (d) Meyer, A. U.; Alexander, W.; K nig, B. Angew. Chem., Int. Ed. 2017, 56, 409.

  • 加载中
    1. [1]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    2. [2]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    3. [3]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    4. [4]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    5. [5]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    6. [6]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    7. [7]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    8. [8]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    9. [9]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    10. [10]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    11. [11]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    12. [12]

      Yiling Wu Peiyao Jin Shenyue Tian Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034

    13. [13]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    14. [14]

      Yuanyi Lu Jun Zhao Hongshuang Li . Silver-Catalyzed Ring-Opening Minisci Reaction: Developing a Teaching Experiment Suitable for Undergraduates. University Chemistry, 2024, 39(11): 225-231. doi: 10.3866/PKU.DXHX202401088

    15. [15]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    16. [16]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    17. [17]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    18. [18]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    19. [19]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    20. [20]

      Lihui Jiang Wanrong Dong Hua Yang Yongqing Xia Hongjian Peng Jun Yuan Xiaoqian Hu Zihan Zeng Yingping Zou Yiming Luo . Study on Extraction of p-Hydroxyacetophenone. University Chemistry, 2024, 39(11): 259-268. doi: 10.12461/PKU.DXHX202402056

Metrics
  • PDF Downloads(17)
  • Abstract views(1384)
  • HTML views(217)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return