Citation: Liu Yu-Cheng, Zheng Xiao, Huang Pei-Qiang. Photoredox Catalysis for the Coupling Reaction of Nitrones with Aromatic Tertiary Amines[J]. Acta Chimica Sinica, ;2019, 77(9): 850-855. doi: 10.6023/A19040150 shu

Photoredox Catalysis for the Coupling Reaction of Nitrones with Aromatic Tertiary Amines

  • Corresponding author: Zheng Xiao, zxiao@xmu.edu.cn Huang Pei-Qiang, pqhuang@xmu.edu.cn
  • Received Date: 30 April 2019
    Available Online: 22 September 2019

    Fund Project: Project supported by the National Key Research and Development Program of China (No. 2017YFA0207302), the National Natural Science Foundation of China (Nos. 21672175, 91856110, 21332007, 21472153), and the Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT) of Ministry of Education, Chinathe National Key Research and Development Program of China 2017YFA0207302the National Natural Science Foundation of China 21332007the National Natural Science Foundation of China 91856110the National Natural Science Foundation of China 21472153the National Natural Science Foundation of China 21672175

Figures(4)

  • Carbon-carbon bond formation at α-amino carbon based on α-aminoalkyl radicals is an essential transformation in the synthesis of nitrogen-containing compounds. Recently, some novel photoredox catalytic protocols for this goal have been developed, in which α-aminoalkyl radicals were generated from a sequential oxidation/α-deprotonation of aromatic tertiary amines. Inspired by these studies and based on our previous works, we have developed the cross-coupling reaction of nitrones with aromatic tertiary amines via visible light photoredox catalysis. This method features a radical addition of α-aminoalkyl radicals to nitrones with advantages of simple operation, mild conditions, atom economy, a broad scope of nitrone substrates; and allows for an easy access to β-amino hydroxylamines, which could be readily converted into vicinal diamines. Compared with the UV-excited organophotosensitizer-promoted coupling reaction of nitrones with tertiary amines, visible light is a more safe and convenient light source, the photo-excited electron transfer (PET) by 1 mol% of Ir-photocatalyst is more efficient. In addition, nitrones exclusively server as excellent radical acceptors thus with a broader range of structures. A general procedure of this coupling reaction is as follows:To a 25 mL Schlenk tube equipped with a magnetic stir bar were added a nitrone (0.30 mmol), a tertiary amine (0.90 mmol), Ir(ppy)2(dtbbpy)PF6 (0.003 mmol, 1.0 mol%) and K2HPO4 (0.06 mmol, 20 mol%). After being evacuated and backfilled with argon for three times, DMSO (3 mL) was added to the tube. Then the tube was placed approximately 7 cm away from a 12 W blue LEDs, and the reaction mixture was stirred at r.t. under an argon atmosphere for 24 h. The reaction was quenched with saturated aqueous NaHCO3 (25 mL), and the mixture was extracted with dichloromethane (DCM, 20 mL×3). The combined organic layers were washed with brine, dried over anhydrous Na2SO4, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel to afford the desired cross-coupling product β-amino hydroxylamine.
  • 加载中
    1. [1]

      (a) Renaud, P.; Giraud, L. Synthesis 1996, 913; (b) Hart, D. in Radicals in Organic Synthesis; Renaud, P.; Sibi, M. P. Eds. Weinheim, Germany: Wiley-VCH, 2001, Vol. 2: pp 279; (c) Aurrecoechea, J. M.; Suero, R. Arkivoc 2004, part xiv, 10, at www.arkat-usa.org; (d) Nakajima, K.; Miyake, Y.; Nishibayashi, Y. Acc. Chem. Res. 2016, 49, 1946.

    2. [2]

    3. [3]

      (a) McNally, A.; Prier, C. K.; MacMillan, D. W. C. Science 2011, 334, 1114; (b) Prier, C. K.; MacMillan, D. W. C. Chem. Sci. 2014, 5, 4173.

    4. [4]

      (a) Miyake, Y.; Nakajima, K.; Nishibayashi, Y. J. Am. Chem. Soc. 2012, 134, 3338; (b) Kohls, P.; Jadhav, K.; Pandey, G.; Reiser, O. Org. Lett., 2012, 14, 672; (c) Espelt, L. R.; Wiensch, E. R.; Yoon, T. P. J. Org. Chem. 2013, 78, 4107; (d) Lin, S.-X.; Sun, G.-J.; Kang, Q. Chem. Commun. 2017, 53, 7665.

    5. [5]

      Miyake, Y.; Nakajima, K.; Nishibayashi, Y. Chem. Eur. J. 2012, 18, 16473.  doi: 10.1002/chem.201203066

    6. [6]

      (a) Uraguchi, D.; Kinoshita, N.; Kizu, T.; Ooi, T. J. Am. Chem. Soc. 2015, 137, 13768; (b) Fava, E.; Millet, A.; Nakajima, M.; Loescher, S.; Rueping, M. Angew. Chem. Int. Ed. 2016, 55, 6776.

    7. [7]

      (a) Wang, C.-Y.; Qin, J.; Shen, X.-D.; Riedel, R.; Harms, K.; Meggers, E. Angew. Chem. Int. Ed. 2016, 55, 685; (b) Li, W.-P.; Duan, Y.-Q.; Zhang, M.-L.; Cheng, J.; Zhu, C.-J. Chem. Commun. 2016, 52, 7596.

    8. [8]

      Zhou, Q.-Q.; Liu, D.; Xiao, W.-J.; Lu, L.-Q. Acta Chim. Sinica 2017, 75, 110(in Chinese).
       

    9. [9]

      Itoh, K.; Kato, R.; Kinugawa, D.; Kamiya, H.; Kudo, R.; Hasegawa, M.; Fujii, H.; Suga, H. Org. Biomol. Chem. 2015, 13, 8919.  doi: 10.1039/C5OB01277E

    10. [10]

      (a) Rau, H. Chem. Rev. 1983, 83, 535; (b) Inoue, Y. Chem. Rev. 1992, 92, 741; (c) Peters, K. S. Adv. Photochem. 2002, 27, 51; (d) Fagnoni, M.; Dondi, D.; Ravelli, D.; Albini, A. Chem. Rev. 2007, 107, 2725; (e) Hoffmann, N. Chem. Rev. 2008, 108, 1052; (f) Bach, T.; Hehn, J. P. Angew. Chem., Int. Ed. 2011, 50, 1000.

    11. [11]

      (a) Szostak, M.; Fazakerley, N. J.; Parmar, D.; Procter, D. J. Chem. Rev. 2014, 114, 5959; (b) Zheng, X.; Huang, P.-Q. Prog. Chem. 2018, 30, 528.

    12. [12]

      Ye, C.-X.; Melcamu, Y. Y.; Li, H.-H.; Cheng, J.-T.; Zhang, T.-T.; Ruan, Y.-P.; Zheng, X.; Lu, X.; Huang, P.-Q. Nat. Commun. 2018, 9, 410.  doi: 10.1038/s41467-017-02698-4

    13. [13]

      Zhong, Y.-W.; Xu, M.-H.; Lin, G.-Q. Org. Lett. 2004, 6, 3953.  doi: 10.1021/ol048444d

    14. [14]

      For reviews on vicinal diamines, see: (a) Lucet, D.; Gall, T. L.; Mioskowski, C. Angew. Chem. Int. Ed. 1998, 37, 2580; (b) Visa, A.; Pradilla, R. F.; Garcίa, A.; Flores, A. Chem. Rev. 2005, 105, 3167; (c) Kotti, S. R. S. S.; Timmons, C.; Li, G. Chem. Biol. Drug. Des. 2006, 67, 101; (d) Cardona, F.; Goti, A. Nat. Chem. 2009, 1, 269; (e) Grygorenko, O. O.; Radchenko, D. S.; Volochnyuk, D. M.; Tolmachev, A. A.; Komarov, I. V. Chem. Rev. 2011, 111, 5506; (f) Zhu, Y.-G.; Cornwall, R. G.; Du, H.-F.; Zhao, B.-G.; Shi, Y. Acc. Chem. Res. 2014, 47, 3665.

  • 加载中
    1. [1]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    2. [2]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    3. [3]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    6. [6]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    7. [7]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    8. [8]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    9. [9]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    10. [10]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    11. [11]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    12. [12]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    13. [13]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    14. [14]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    15. [15]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    16. [16]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    17. [17]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    18. [18]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    19. [19]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    20. [20]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

Metrics
  • PDF Downloads(21)
  • Abstract views(1630)
  • HTML views(330)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return