Citation: Qi Qige, Yang Chunfan, Xia Ye, Liu Kunhui, Su Hongmei. Photo-induced Electron Transfer between 4-Thiouracil and Tryptophan[J]. Acta Chimica Sinica, ;2019, 77(6): 515-519. doi: 10.6023/A19040149 shu

Photo-induced Electron Transfer between 4-Thiouracil and Tryptophan

  • Corresponding author: Yang Chunfan, yangchunfan@bnu.edu.cn Su Hongmei, hongmei@bnu.edu.cn
  • Received Date: 29 April 2019
    Available Online: 22 June 2019

    Fund Project: the National Natural Science Foundation of China 21727803the National Natural Science Foundation of China 21425313Project supported by the National Natural Science Foundation of China (Nos. 21425313, 21727803, 21703011)the National Natural Science Foundation of China 21703011

Figures(6)

  • RNA-protein interactions are inevitably existing in many fundamental biological processes of organisms and it is an effective method to investigate the nature of RNA-protein interactions through crosslinking induced by photoactivation. Therefore, it is of great importance to detect the crucial transient intermediates to elucidate the mechanism of photo crosslinking between RNA and proteins, which will shed light on regulating the crosslinking sites as well as the favorable cross-linked amino acids. In this research, we choose the photoactivatable ribonucleotide analog, 4-thiouracil, and the aromatic amino acid, tryptophan, as a model system to study, from which the photo crosslinking is found to be initiated by the electron transfer as the first step. By means of the nanosecond time-resolved laser flash photolysis, the key intermediates of photo-induced electron transfer from tryptophan to the triplet of 4-thiouracil, 4-thiouracil anion radical (4-TU·-)and tryptophan cation radical (TrpH·+) are observed, as well as the deprotonated species of tryptophan neutral radical (Trp·). By monitoring the 4-TU triplet decay kinetics, the pseudo-first order rate constant of photo-induced electron transfer is determined to be 2.88×109 L·mol-1·s-1 and found to be diffusion-controlled. The pH-effect on the electron transfer and proton transfer have been further examined. In addition, the driving force for electron transfer from tryptophan to 4-TU triplet is estimated using the classic Rehm-Weller empirical equation to be -0.15 eV, which means the photo-induced electron transfer process is favorable thermodynamically. These results demonstrate that photo-induced electron transfer between 4-thiouracil triplet and tryptophan is the key step, which can trigger the following proton transfer and radical coupling processes and lead to the covalent photoadducts. These studies provide a basis for mechanistic understandings of photo crosslinking between RNA and proteins in more complex system.
  • 加载中
    1. [1]

      Lin, R. J. RNA-Protein Interaction Protocols, Humana Press, Totowa, USA, 2008, p. 85.

    2. [2]

      Ule, J.; Jensen, K. B.; Ruggiu, M.; Mele, A.; Ule, A.; Darnell, R. B. Science 2003, 302, 1212.  doi: 10.1126/science.1090095

    3. [3]

      Licatalosi, D. D.; Mele, A.; Fak, J. J.; Ule, J.; Kayikci, M.; Chi, S. W.; Clark, T. A.; Schweitzer, A. C.; Blume, J. E.; Wang, X.; Dar-nell, J. C.; Darnell, R. B. Nature 2008, 456, 464.  doi: 10.1038/nature07488

    4. [4]

      Kishore, S.; Jaskiewicz, L.; Burger, L.; Hausser, J.; Khorshid, M.; Zavolan, M. Nat. Methods 2011, 8, 559.  doi: 10.1038/nmeth.1608

    5. [5]

      Hafner, M.; Landthaler, M.; Burger, L.; Khorshid, M.; Hausser, J.; Berninger, P.; Rothballer, A.; Ascano, M. Jr.; Jungkamp, A. C.; Munschauer, M.; Ulrich, A.; Wardle, G. S.; Dewell, S.; Zavolan, M.; Tuschl, T. Cell 2010, 141, 129.  doi: 10.1016/j.cell.2010.03.009

    6. [6]

      Ascano, M.; Hafner, M.; Cekan, P.; Gerstberger, S.; Tuschl, T. WIRES RNA 2012, 3, 159.  doi: 10.1002/wrna.v3.2

    7. [7]

      Kstharina, K.; Timo, S.; Benedikt, M. B.; Saadia, Q.; Kum, L. B.; Matthias, W. H.; Oliver, K.; Urlaub, H. Nat. Methods 2014, 11, 1064.  doi: 10.1038/nmeth.3092

    8. [8]

      Zhou, D. J.; Ye, K. Q. Chin. Bull. Life Sci. 2014, 26, 207(in Chinese).

    9. [9]

      Favre, A.; Saintome, C.; Fourrey, J. L.; Clivio, P.; Laugaa, P. J. Photochem. Photobiol. B-Biol. 1998, 42, 109.  doi: 10.1016/S1011-1344(97)00116-4

    10. [10]

      Shalitin, N.; Feitelson, J. Biochemistry 1976, 15, 2092.  doi: 10.1021/bi00655a010

    11. [11]

      Zou, X. R.; Dai, X. J.; Liu, K. H.; Zhao, H. M.; Song, D.; Su, H. M. J. Phys. Chem. B 2014, 118, 5864.  doi: 10.1021/jp501658a

    12. [12]

      Milder, S. J.; Kliger, D. S. J. Am. Chem. Soc. 1985, 107, 7365.  doi: 10.1021/ja00311a025

    13. [13]

      Khvorostov, A.; Lapinski, L.; Rostkowska, H.; Nowak, M. J. Photochem. Photobiol. 2005, 81, 1205.  doi: 10.1562/2005-05-19-RA-534

    14. [14]

      Gagliardi, C. J.; Binstead, R. A.; Thorp, H. H.; Meyer, T. J. J. Am. Chem. Soc. 2011, 133, 19594.  doi: 10.1021/ja207379n

    15. [15]

      Zhang, M. T.; Hammarström, L. J. Am. Chem. Soc. 2011, 133, 8806.  doi: 10.1021/ja201536b

    16. [16]

      Miller, J. E.; Gradinaru, C.; Crane, B. R.; Di Bilio, A. J.; Wehbi, W. A.; Un, S.; Winkler, J. R.; Gray, H. B. J. Am. Chem. Soc. 2003, 125, 14220.  doi: 10.1021/ja037203i

    17. [17]

      Lassmann, G.; Lendzian, F.; MacMillian, F.; Bittl, R.; Potsch, S.; Sahlin, M.; Sjoberg, B. M.; Graslund, A.; Lubitz, W. FASEB J. 1997, 11, A882.

    18. [18]

      Solar, S.; Getoff, N.; Surdhar, P. S.; Armstrong, D. A.; Singh, A. J. Phys. Chem. 1991, 95, 3639.  doi: 10.1021/j100162a038

    19. [19]

      Katharina, K.; Petra, H.; He, H. H.; Xiao, L.; Markus, W.; Urlaub, H. Int. J. Mass Spectrom. 2011, 304, 184.  doi: 10.1016/j.ijms.2010.10.009

    20. [20]

      Rehm, D.; Weller, A. Isr. J. Chem. 1970, 8, 259.  doi: 10.1002/ijch.v8.2

    21. [21]

      Holzer, K. P.; Wrona, Z. Bioelectrochem. Bioenerg. 1983, 11, 3.  doi: 10.1016/0302-4598(83)85096-X

    22. [22]

      Wrona, Z.; Czochralska, B.; Shugar, D. J. Electroanal. Chem. 1976, 68, 355.  doi: 10.1016/S0022-0728(76)80275-6

    23. [23]

      Sjödin, M.; Styring, S.; Åkermark, B.; Sun, L. C.; Hammarström, L. J. Am. Chem. Soc. 2000, 122, 3932.  doi: 10.1021/ja993044k

    24. [24]

      Tsentalovich, Y. P.; Lopez, J. J.; Hore, P. J.; Sagdeev, R. Z. Spectrochim. Acta, Part A 2002, 58, 2043.  doi: 10.1016/S1386-1425(01)00652-7

    25. [25]

      Psoda, A.; Kazimierczuk, Z.; Shugar, D. J. Am. Chem. Soc. 1974, 96, 6832.  doi: 10.1021/ja00829a003

    26. [26]

      Cardoso, D. R.; Franco, D. W.; Olsen, K.; Andersen, M. L.; Skibsted, L. H. J. Agric. Food Chem. 2004, 52, 6602.  doi: 10.1021/jf0401165

    27. [27]

      Heelis, P. F.; Parsons, B. J.; Phillips, G. O. Biochim. Biophys. Acta 1979, 587, 455.  doi: 10.1016/0304-4165(79)90449-5

    28. [28]

      Sjödin, M.; Styring, S.; Wolpher, H.; Xu, Y.; Sun, L.; Ham-marström, L. J. Am. Chem. Soc. 2005, 127, 3855.  doi: 10.1021/ja044395o

    29. [29]

      Wu, L. D.; Jie, J. L.; Liu, K. H.; Su, H. M. Acta Chim. Sinica 2014, 72, 1182(in Chinese).
       

  • 加载中
    1. [1]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    2. [2]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    3. [3]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    4. [4]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    5. [5]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    6. [6]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    7. [7]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    8. [8]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    9. [9]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    10. [10]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    11. [11]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    12. [12]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    13. [13]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    14. [14]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    15. [15]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    16. [16]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    17. [17]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    18. [18]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    19. [19]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    20. [20]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

Metrics
  • PDF Downloads(9)
  • Abstract views(1018)
  • HTML views(156)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return