Citation: Yang Ying, Zhu Congtan, Lin Feiyu, Chen Tian, Pan Dequn, Guo Xueyi. Research Progress of Inverted Perovskite Solar Cells[J]. Acta Chimica Sinica, ;2019, 77(10): 964-976. doi: 10.6023/A19040143 shu

Research Progress of Inverted Perovskite Solar Cells

  • Corresponding author: Guo Xueyi, xyguo@csu.edu.cn
  • Received Date: 24 April 2019
    Available Online: 3 October 2019

    Fund Project: Undergraduate student of Central South University 202321009Natural Science Foundation of Hunan 2016JJ3140Undergraduate student of Central South University ZY20180866Project supported by the National Natural Science Foundation of China (No. 61774169), Scientific Research Foundation for the Returned overseas Chinese Scholar, Natural Science Foundation of Hunan (No. 2016JJ3140) and Undergraduate student of Central South University (Nos. ZY20180866, 202321009)the National Natural Science Foundation of China 61774169

Figures(8)

  • Since the introduction of perovskite solar cells in 2009, perovskite solar cells have developed rapidly due to their low-cost and high theoretical photoelectric conversion efficiency. Among them, the inverted structure of perovskite solar cells has received more and more attention due to its good stability and low hysteresis effect. Since its inception in 2013, its photoelectric conversion efficiency has rapidly increased from the initial 3.9% to 21.5%. However, compared with the traditional upright structure perovskite solar cells, there is still a gap in the photoelectric conversion efficiency of inverted perovskite solar cells. Due to the nature of the organic materials used, perovskites are more severely affected by moisture in the air environment. They are heavily dependent on nitrogen protection during device manufacturing. In the future, if perovskite solar cells are put into production, the fully enclosed waterless environment will obviously increase the production costs. At the same time, the development of large-area preparation technology is still a difficult problem to be solved. The development of inverted perovskite solar cells, the selection of carrier transport materials, interface optimization, and the development of flexible devices are systematically reviewed in this paper. For example, PEDOT:PSS was doped by GeO2 and DMSO, and PEDOT:PSS was modified by MoO3 and GO to improve its work function, acidity and hygroscopicity. A NiOx dense layer is usually doped with Mg2+, Li+ and Cs4+ to increase its conductivity, which can be prepared by different methods such as magnetron sputtering and sol-gel method. The PCBM interface is modified by C60, BCP, LiF etc., to enhance its ohmic contact with the metal counter electrode. And the PCBM is doped by graphene, CoSe, SnO2 etc., to reduce the charge recombination caused by the interfacial resistance and the defects of the perovskite film. This paper would provide a way to obtain a high efficiency inverted perovskite solar cells by structure and material optimization. And it also give insights into the general rules for preparing large area and flexible devices.
  • 加载中
    1. [1]

      Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050.  doi: 10.1021/ja809598r

    2. [2]

      Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html.

    3. [3]

      Yang, Y.; Wang, W. J. Power Sources 2015, 293, 577.  doi: 10.1016/j.jpowsour.2015.05.081

    4. [4]

      Meng, L.; You, J.; Guo, T.; Yang, Y. Acc. Chem. Res. 2015, 49, 155.

    5. [5]

      Lian, X.; Chen, J.; Fu, R.; Lau, T. K.; Zhang, Y.; Wu, G.; Lu, X.; Fang, Y.; Yang, D.; Chen, H. J. Mater. Chem. A 2018, 6, 24633.

    6. [6]

      Lee, J. W.; Kim, S. G.; Bae, S. H.; Lee, D. K.; Lin, O.; Yang, Y.; Park, N. G. Nano Lett. 2017, 17, 4270.  doi: 10.1021/acs.nanolett.7b01211

    7. [7]

      Jeng, J.; Chiang, Y.; Lee, M. H.; Peng, S.; Guo, T.; Chen, P.; Wen, T. Adv. Mater. 2013, 25, 3727.  doi: 10.1002/adma.201301327

    8. [8]

      Bai, S.; Wu, Z.; Wu, X.; Jin, Y.; Zhao, N.; Chen, Z.; Mei, Q.; Wang, X.; Ye, Z.; Song, T.; Liu, R.; Lee, S.; Sun, B. Nano Res. 2014, 7, 1749.  doi: 10.1007/s12274-014-0534-8

    9. [9]

      Wang, K.; Jeng, J.; Shen, P.; Chang, Y.; Diau, E. W.; Tsai, C. H.; Chao, T. Y.; Hsu, H. C.; Lin, P.; Chen, P.; Guo, T.; Wen, T. Sci. Rep. 2014, 4, 4756.

    10. [10]

      Kim, J. H.; Liang, P.; Williams, S. T.; Cho, N.; Chueh, C. C.; Glaz, M. S.; Ginger, D. S.; Jen, A. K. Y. Adv. Mater. 2015, 27, 695.  doi: 10.1002/adma.201404189

    11. [11]

      Hu, Z.; Chen, D.; Yang, P.; Yang, L.; Qin, L.; Huang, Y.; Zhao, X. Appl. Surf. Sci. 2018, 441, 258.  doi: 10.1016/j.apsusc.2018.01.236

    12. [12]

      Wei, Y.; Yao, K.; Wang, X.; Jiang, Y.; Liu, X.; Zhou, N.; Li, F. Appl. Surf. Sci. 2018, 427, 782.  doi: 10.1016/j.apsusc.2017.08.184

    13. [13]

      Chen, W.; Wu, Y.; Yue, Y.; Liu, J.; Zhang, W.; Yang, X.; Chen, H.; Bi, E.; Ashraful, I.; Grätzel, M.; Han, L. Science 2015, 350, 944.  doi: 10.1126/science.aad1015

    14. [14]

      Chen, W.; Liu, F.; Feng, X.; Aleksandra, B. D.; Chan, W.; He, Z. Adv. Energy Mater. 2017, 7, 1700722.  doi: 10.1002/aenm.201700722

    15. [15]

      Yang, D.; Zhang, X.; Wang, K.; Wu, C.; Yang, R.; Hou, Y.; Jiang, Y.; Liu, S.; Priya, S. Nano Lett. 2019, 19, 3313.  doi: 10.1021/acs.nanolett.9b00936

    16. [16]

      Luo, D.; Yang, W.; Wang, Z.; Sadhanala, A.; Hu, Q.; Su, R.; Shivanna, R.; Gustavo F. T.; John, F. W.; Xu, Z.; Liu, T.; Chen, K.; Ye, F.; Wu, P.; Zhao, L.; Wu, J.; Tu, Y.; Zhang, Y.; Yang, X.; Zhang, W.; Richard, H. F.; Gong, Q.; Snaith, H. J.; Zhu, R. Science 2018, 360, 1442.  doi: 10.1126/science.aap9282

    17. [17]

      Malinkiewicz, O.; Yella, A.; Lee, Y. H.; Espallargas, G. M.; Graetzel, M.; Mohammad, K. N.; Henk, J. B. Nat. Photonics 2014, 8, 128.  doi: 10.1038/nphoton.2013.341

    18. [18]

      Heo, J. H.; Han, H. J.; Kim, D.; Ahn, T. K.; Im, S. H. Energy Environ. Sci. 2015, 8, 1602.  doi: 10.1039/C5EE00120J

    19. [19]

      Sawanta, S. M.; Kim, H.; Kim, H. H.; Shim, S. E.; Hong, C. K. Mater. Today 2018, 21, 483.  doi: 10.1016/j.mattod.2017.12.002

    20. [20]

      Wang, Y.; Duan, C.; Li, J.; Han, W.; Zhao, M.; Yao, L.; Wang, Y.; Yan, C.; Jiu, T. ACS Appl. Mater. Interf. 2018, 10, 20128.  doi: 10.1021/acsami.8b03444

    21. [21]

      Zheng, X.; Deng, Y.; Chen, B.; Wei, H.; Xiao, X.; Fang, Y.; Lin, Y.; Yu, Z.; Liu, Y.; Wang, Q.; Huang, J. Adv. Mater. 2018, 1803428.

    22. [22]

      Marchioro, A.; Teuscher, J.; Friedrich, D.; Kunst, M.; Krol, R.; Moehl, T.; Grätzel, M.; Moser, J. E. Nat. Photonics 2014, 8, 250.  doi: 10.1038/nphoton.2013.374

    23. [23]

      Chen, K.; Hu, Q.; Liu, T.; Zhao, L.; Luo, D.; Wu, J.; Zhang, Y.; Zhang, W.; Liu, F.; Russell, T. P.; Zhu, R.; Gong, Q. Adv. Mater. 2016, 28, 10718.  doi: 10.1002/adma.201604048

    24. [24]

      Na, S.; Kim, S.; Jo, J.; Kim, D. Adv. Mater. 2008, 20, 4061.  doi: 10.1002/adma.200800338

    25. [25]

      Liu, H.; Li, M.; Richard, B. K.; Chen, S.; Pei, Q. ACS Appl. Mater. Interf. 2018, 10, 15609.  doi: 10.1021/acsami.8b00014

    26. [26]

      Yang, P.; Tang, Q. Electrochim. Acta 2016, 188, 560.  doi: 10.1016/j.electacta.2015.12.066

    27. [27]

      Gao, J.; Yang, Y.; Zhang, Z.; Yan, J.; Lin, Z.; Guo, X. Nano Energy 2016, 26, 123.  doi: 10.1016/j.nanoen.2016.05.010

    28. [28]

      Yang, Y.; Gao, J.; Zhang, Z.; Xiao, S.; Xie, H.; Sun, Z.; Wang, J.; Zhou, C.; Wang, Y.; Guo, X.; Chu, P.; Yu, X. Adv. Mater. 2016, 28, 8787.  doi: 10.1002/adma.201670279

    29. [29]

      Gao, J.; Yang, Y.; Yan, J.; Zhang, Z.; Pan, D.; Dai, Q.; Guo, X. J. Alloy. Compd. 2018, 764, 482.  doi: 10.1016/j.jallcom.2018.06.079

    30. [30]

      Yang, Y.; Chen, T.; Pan, D.; Zhang, Z.; Guo, X. Acta Chim. Sinica 2018, 76, 997 (in Chinese).  doi: 10.11862/CJIC.2018.125

    31. [31]

      Liang, P. W.; Liao, C. Y.; Chueh, C. C.; Zuo, F.; Williams, S. T.; Xin, X. K.; Lin, J.; Jen, A. K. Y. Adv. Mater. 2014, 26, 3748.  doi: 10.1002/adma.201400231

    32. [32]

      Lim, K. G.; Kim, H. B.; Jeong, J.; Kim, H.; Kim, J. Y.; Lee, T. W. Adv. Mater. 2014, 26, 6461.  doi: 10.1002/adma.201401775

    33. [33]

      Bi, C.; Wang, Q.; Shao, Y.; Yuan, Y.; Xiao, Z.; Huang, J. Nat. Commun. 2015, 6, 7747.  doi: 10.1038/ncomms8747

    34. [34]

      Lou, Y.; Li, M.; Wang, Z. Appl. Phys. Lett. 2016, 108, 053301.  doi: 10.1063/1.4941416

    35. [35]

      Qian, M.; Li, M.; Shi, X.; Ma, H.; Wang, Z; Liao, L. J. Mater. Chem. A 2015, 3, 10533.

    36. [36]

      Huang, P.; Yuan, L.; Li, Y.; Zhou, W.; Song, B. Acta Phys.-Chim. Sin. 2018, 34, 1264 (in Chinese).  doi: 10.3866/PKU.WHXB201804096

    37. [37]

      Huang, D.; Goh, T.; Kong, J.; Zheng, Y.; Zhao, S.; Xu, Z.; Taylor, A. D. Nanoscale 2017, 9, 4236.  doi: 10.1039/C6NR08375G

    38. [38]

      Hu, L.; Sun, K.; Wang, M.; Chen, W.; Yang, B.; Fu, J.; Xiong, Z.; Li, X.; Tang, X.; Zang, Z.; Zhang, S.; Sun, L.; Li, M. ACS Appl. Mater. Interf. 2017, 9, 43902.  doi: 10.1021/acsami.7b14592

    39. [39]

      Liu, D.; Li, Y.; Yuan, J.; Hong, Q.; Shi, G.; Yuan, D.; Wei, J.; Huang, C.; Tang, J.; Fung, M. J. Mater. Chem. A 2017, 5, 5701.  doi: 10.1039/C6TA10212C

    40. [40]

      Yu, J.; Hong, J.; Jung, E.; Kim, D. B.; Baek, S. M.; Lee, S.; Cho, S.; Park, S. S.; Choi, K. J.; Song, M. Sci. Rep. 2018, 8, 1070.  doi: 10.1038/s41598-018-19612-7

    41. [41]

      Yoon, S.; Ha, T. J.; Kang, D. W. Nanoscale 2017, 9, 9754.  doi: 10.1039/C7NR02404E

    42. [42]

      Luo, H.; Lin, X.; Hou, X.; Pan, L.; Huang, S.; Chen, X. Nano-Micro Lett. 2017, 9, 39.  doi: 10.1007/s40820-017-0140-x

    43. [43]

      Jhuo, H. J.; Yeh, P. N.; Liao, S. H.; Li, Y. L.; Sharma, S.; Chen, S. A. J. Mater. Chem. A 2015, 3, 9291.  doi: 10.1039/C5TA01479D

    44. [44]

      Sung, H.; Ahn, N.; Jang, M.; Lee, J.; Yoon, H.; Park, N.; Choi, M. Adv. Energy Mater. 2015, 6, 1501873.

    45. [45]

      Huang, J.; Yuan, Y.; Shao, Y.; Yan, Y. Nat. Rev. Mater. 2017, 2, 17042.  doi: 10.1038/natrevmats.2017.42

    46. [46]

      Zhang, W.; Smith, J.; Hamilton, R.; Heeney, M.; Kirkpatrick, J.; Song, K.; Watkins, S. E.; Anthopoulos, T.; McCulloch, I. J. Am. Chem. Soc. 2009, 131, 10814.  doi: 10.1021/ja9034818

    47. [47]

      Serpetzoglou, E.; Konidakis, I.; Kakavelakis, G.; Maksudov, T.; Kymakis, E.; Stratakis, E. ACS Appl. Mater. Interf. 2017, 9, 43910.  doi: 10.1021/acsami.7b15195

    48. [48]

      Xiao, X.; Bao, C.; Fang, Y.; Dai, J.; Ecker, B. R.; Wang, C.; Lin, Y.; Tang, S.; Liu, Y.; Deng, Y.; Zheng, X.; Gao, Y.; Zeng, X.; Huang, J. Adv. Mater. 2018, 30, 1705176.  doi: 10.1002/adma.201705176

    49. [49]

      Deng, Y.; Zheng, X.; Bai, Y.; Wang, Q.; Zhao, J.; Huang, J. Nat. Energy 2018, 3, 560.  doi: 10.1038/s41560-018-0153-9

    50. [50]

      Wang, Q.; Bi, C.; Huang, J. Nano Energy 2015, 15, 275.  doi: 10.1016/j.nanoen.2015.04.029

    51. [51]

      Zhou, Z.; Li, X.; Cai, M.; Xie, F.; Wu, Y.; Lan, Z.; Yang, X.; Qiang, Y.; Ashraful, I.; Han, L. Adv. Energy Mater. 2017, 7, 1700763.  doi: 10.1002/aenm.201700763

    52. [52]

      Yan, W.; Li, Y.; Li, Y.; Ye, S.; Liu, Z.; Wang, S.; Bian, Z.; Huang, C. Nano Res. 2015, 8, 2474.  doi: 10.1007/s12274-015-0755-5

    53. [53]

      Yan, W.; Li, Y.; Li, Y.; Ye, S.; Liu, Z.; Wang, S.; Bian, Z.; Huang, C. Nano Energy 2015, 16, 428.  doi: 10.1016/j.nanoen.2015.07.024

    54. [54]

      Chiang, T.; Fan, G.; Jeng, J.; Chen, K.; Chen, P.; Wen, T.; Guo, T.; Wong, K. ACS Appl. Mater. Interf. 2015, 7, 24973.  doi: 10.1021/acsami.5b09012

    55. [55]

      Zhao, D.; Sexton, M.; Park, H. Y.; George, B.; Juan, C. N.; Franky, S. Adv. Energy Mater. 2014, 5, 1570031.

    56. [56]

      Choi, H.; Mai, C. K.; Kim, H. B.; Jeong, J.; Song, S.; Bazan, G. C.; Kim, J. Y.; Heeger, A. J. Nat. Commun. 2015, 6, 7348.  doi: 10.1038/ncomms8348

    57. [57]

      Li, X.; Liu, X.; Wang, X.; Zhao, L.; Jiu, T.; Fang, J. J. Mater. Chem. A 2015, 3, 15024.  doi: 10.1039/C5TA04712A

    58. [58]

      Luo, S.; Sun, Y.; Hu, Q. Shangdong Ceram. 2010, 33, 0014.

    59. [59]

      Docampo, P.; Ball, J. M.; Darwich, M.; Eperon, G. E.; Snaith, H. J. Nat. Commun. 2013, 4, 2761.  doi: 10.1038/ncomms3761

    60. [60]

      Chen, W.; Wu, Y.; Liu, J.; Qin, C.; Yang, X.; Islam, A.; Cheng, Y. B.; Han, L. Energy Environ. Sci. 2015, 8, 629.  doi: 10.1039/C4EE02833C

    61. [61]

      Cui, J.; Meng, F.; Zhang, H.; Cao, K.; Yuan, H.; Cheng, Y.; Huang, F.; Wang, M. ACS Appl. Mater. Interf. 2014, 6, 22862.  doi: 10.1021/am507108u

    62. [62]

      Park, J. H.; Seo, J.; Park, S.; Shin, S. S.; Kim, Y. C.; Jeon, N. J.; Shin, H. W.; Ahn, T. K.; Noh, J. H.; Yoon, S. C.; Hwang, C. S.; Seok, S. I. Adv. Mater. 2015, 27, 4013.

    63. [63]

      Tang, L.; Chen, X.; Wen, T; Yang, S.; Zhao, J.; Qiao, H.; Hou, Y.; Yang, H. Chem 2018, 24, 2845.  doi: 10.1002/chem.201705658

    64. [64]

      Subbiah, A. S.; Halder, A.; Ghosh, S.; Mahuli, N.; Hodes, G.; Sarkar, S. K. J. Phys. Chem. Lett. 2014, 5, 1748.  doi: 10.1021/jz500645n

    65. [65]

      Ye, S.; Sun, W.; Li, Y.; Yan, W.; Peng, H.; Bian, Z.; Liu, Z.; Huang, C. Nano Lett. 2015, 15, 3723.  doi: 10.1021/acs.nanolett.5b00116

    66. [66]

      Wang, H.; Yu, Z.; Jiang, X.; Li, J.; Cai, B.; Yang, X.; Sun, L. Energy Technol. 2017, 5, 1836.

    67. [67]

      Yu, W.; Li, F.; Wang, H.; Alarousu, E.; Chen, Y.; Lin, B.; Wang, L.; Hedhili, M. N.; Li, Y.; Wu, K.; Wang, X.; Mohammed, O. F.; Wu, T. Nanoscale 2016, 8, 6173.  doi: 10.1039/C5NR07758C

    68. [68]

      Yu, Z.; Fu, W.; Liu, W.; Zhang, Z.; Liu, Y.; Yan, J.; Ye, T.; Yang, W.; Li, H.; Chen, H. Chinese Chem. Lett. 2017, 28, 13.  doi: 10.1016/j.cclet.2016.06.021

    69. [69]

      Guo, C. X.; Sun, K.; Ouyang, J.; Lu, X. Chem. Mater. 2015, 27, 5813.  doi: 10.1021/acs.chemmater.5b02512

    70. [70]

      Wu, Z.; Bai, S.; Xiang, J.; Yuan, Z.; Yang, Y.; Cui, W.; Gao, X.; Liu, Z.; Jin, Y.; Sun, B. Nanoscale 2014, 6, 10505.  doi: 10.1039/C4NR03181D

    71. [71]

      Yeo, J. S.; Kang, R.; Lee, S.; Jeon, Y. J.; Myoung, N. S.; Lee, C. L.; Kim, D. Y.; Yun, J. M.; Seo, Y. H.; Kim, S. S.; Na, S. I. Nano Energy 2015, 12, 96.  doi: 10.1016/j.nanoen.2014.12.022

    72. [72]

      Zhang, Y.; Yao, Z.; Lin, S.; Li, J.; Lin, H. Acta Chim. Sinica 2015, 73, 219 (in Chinese).
       

    73. [73]

      Xue, Q.; Sun, C.; Hu, Z.; Huang, F.; Ye, X.; Cao, Y. Acta Chim. Sinica 2015, 73, 179 (in Chinese).
       

    74. [74]

      Pang, S.; Hu, H.; Zhang, J.; Lv, S.; Yu, Y.; Wei, F.; Qin, T.; Xu, H.; Liu, Z.; Cui, G. Chem. Mater. 2014, 26, 1485.  doi: 10.1021/cm404006p

    75. [75]

      Zuo, F.; Williams, S. T.; Liang, P. W.; Chueh, C. C.; Liao, C. Y.; Jen, A. K. Adv. Mater. 2014, 26, 6454.  doi: 10.1002/adma.201401641

    76. [76]

      Bai, X.; Shi, Y.; Wang, K.; Dong, Q.; Xing, Y.; Zhang, H.; Wang, L.; Ma, T. Acta Phys.-Chim. Sin. 2015, 31, 285 (in Chinese).  doi: 10.3866/PKU.WHXB201412241

    77. [77]

      Noel, N.; Stranks, S.; Abate, A.; Wehrenfennig, C.; Guarnera, S.; Haghighirad, A.; Sadhanala, A.; Eperon, G.; Pathak, S.; Johnston, M.; Petrozza, A.; Herz, L.; Snaith, H. J. Energy Environ. Sci. 2014, 7, 3061.  doi: 10.1039/C4EE01076K

    78. [78]

      Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Science 2013, 342, 341.  doi: 10.1126/science.1243982

    79. [79]

      Hao, F.; Stoumpos, C. C.; Cao, D. H.; Chang, R. P. H.; Kanatzidis, M. G. Nat. Photonics 2014, 8, 489.  doi: 10.1038/nphoton.2014.82

    80. [80]

      Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Nano Lett. 2013, 13, 1764.  doi: 10.1021/nl400349b

    81. [81]

      Chen, X.; Xie, J.; Wang, W.; Yuan, H.; Xu, Y.; Zhang, T.; He, Y.; Shen, H. Acta Chim. Sinica 2019, 77, 9 (in Chinese).  doi: 10.3866/PKU.WHXB201711141
       

    82. [82]

      Wu, M.; Liu, S.; Chen, H.; Wei, X.; Li, M.; Yang, Z.; Ma, X. Acta Chim. Sinica 2018, 76, 49 (in Chinese).  doi: 10.3866/PKU.WHXB201707041
       

    83. [83]

      Wang, F.; Cao, Y. Z.; Chen, C.; Chen, Q.; Wu, X.; Li, X. G.; Qin, T. S.; Huang, W. Adv. Funct. Mater. 2018, 28, 1803753.  doi: 10.1002/adfm.201803753

    84. [84]

      Jiang, K.; Wu, F.; Yu, H.; Yao, Y.; Zhang, G.; Zhu, L.; Yan, H. J. Mater. Chem. A 2018, 6, 16868.  doi: 10.1039/C8TA06081A

    85. [85]

      Wu, J. L.; Huang, W. K.; Chang, Y. C.; Tsai, B. C.; Hsiao, Y. C.; Chang, C. Y.; Chen, C. T. J. Mater. Chem. A 2017, 5, 12811.  doi: 10.1039/C7TA02617J

    86. [86]

      Wu, F.; Gao, W.; Yu, H.; Zhu, L.; Li, L.; Yang, C. J. Mater. Chem C 2018, 6, 4443.  doi: 10.1039/C8TA00492G

    87. [87]

      Liu, X.; Li, X.; Zou, Y.; Liu, H.; Wang, L.; Fang, J.; Yang, C. J. Mater. Chem. A 2019, 7.

    88. [88]

      You, J.; Hong, Z.; Yang, Y. M.; Chen, Q.; Cai, M.; Song, T. B.; Chen, C. C.; Lu, S.; Liu, Y.; Zhou, H.; Yang, Y. ACS Nano 2014, 8, 1674.

    89. [89]

      Chiang, C. H.; Tseng, Z. L.; Wu, C. G. J. Mater. Chem. A 2014, 2, 15897.  doi: 10.1039/C4TA03674C

    90. [90]

      Kuang, C.; Tang, G.; Jiu, T.; Yang, H.; Liu, H.; Li, B.; Luo, W.; Li, X.; Zhang, W.; Lu, F.; Fang, J.; Li, Y. Nano Lett. 2015, 15, 2756.  doi: 10.1021/acs.nanolett.5b00787

    91. [91]

      Xia, F.; Wu, Q.; Zhou, P.; Li, Y.; Chen, X.; Liu, Q.; Zhu, J.; Dai, S.; Lu, Y.; Yang, S. ACS Appl. Mater. Interf. 2015, 7, 13659.  doi: 10.1021/acsami.5b03525

    92. [92]

      Kakavelakis, G.; Maksudov, T.; Konios, D.; Paradisanos, I.; Kioseoglou, G.; Stratakis, E.; Kymakis, E. Adv. Energy Mater. 2016, 7.

    93. [93]

      Bae, J. H.; Noh, Y. J.; Kang, M.; Kim, D. Y.; Kim, H. B.; Oh, S. H.; Yun, J. M.; Na, S. I. RSC Adv. 2016, 6.

    94. [94]

      Chen, S.; Yang, S.; Sun, H.; Zhang, L.; Peng, J.; Liang, Z.; Wang, Z. S. J. Power Sources 2017, 353, 123.  doi: 10.1016/j.jpowsour.2017.03.144

    95. [95]

      Gu, P. Y.; Wang, N.; Wu, A.; Wang, Z.; Tian, M.; Fu, Z.; Sun, X. W.; Zhang, Q. Chem-Asian J. 2016, 11, 2135.  doi: 10.1002/asia.201600856

    96. [96]

      Jia, J.; Wu, J.; Dong, J.; Fan, L.; Huang, M.; Lin, J.; Lan, Z. Chem. Commun. 2018, 54, 3170.  doi: 10.1039/C7CC09838C

    97. [97]

      Yang, D.; Zhou, L.; Yu, W.; Zhang, J.; Li, C. Adv. Energy Mater. 2014, 4, 1400591.  doi: 10.1002/aenm.201400591

    98. [98]

      Zhang, Y.; Hu, X.; Chen, L.; Huang, Z.; Fu, Q.; Liu, Y.; Zhang, L.; Chen, Y. Org. Electron. 2016, 30, 281.  doi: 10.1016/j.orgel.2016.01.002

    99. [99]

      Du, Y.; Cai, H.; Bao, X.; Xing, Z.; Wu, Y.; Xu, J.; Huang, L.; Ni, J.; Li, J.; Zhang, J. ACS Sustain. Chem. Eng. 2017, 6, 1083.

    100. [100]

      Wang, Q.; Chueh, C. C.; Zhao, T.; Cheng, J.; Eslamian, M.; Choy, W. C. H.; Jen, A. K. ChemSusChem 2017, 10, 3794.  doi: 10.1002/cssc.201701262

    101. [101]

      Tavakoli, M. M.; Lin, Q.; Leung, S. F.; Lui, G. C.; Lu, H.; Li, L.; Xiang, B.; Fan, Z. Nanoscale 2016, 8, 4276.  doi: 10.1039/C5NR08836D

    102. [102]

      Jeon, I.; Yoon, J.; Ahn, N.; Atwa, M.; Delacou, C.; Anisimov, A.; Kauppinen, E. I.; Choi, M.; Maruyama, S.; Matsuo, Y. J. Phys. Chem. Lett. 2017, 8, 5395.  doi: 10.1021/acs.jpclett.7b02229

    103. [103]

      Luo, Q.; Ma, H.; Hao, F.; Hou, Q.; Ren, J.; Wu, L.; Yao, Z.; Zhou, Y.; Wang, N.; Jiang, K.; Lin, H.; Guo, Z. Adv. Funct. Mater. 2017, 27, 1703068.  doi: 10.1002/adfm.201703068

    104. [104]

      Hong, I. K.; Choi, M. J.; Lim, K.; Kim, C.; Kwon, Y. H.; Park, S. K. Adv. Energy Mater. 2018, 1702872.

    105. [105]

      Najafi, M.; Di, G. F.; Zhang, D.; Shanmugam, S.; Senes, A.; Verhees, W.; Hadipour, A.; Galagan, Y.; Aernouts, T.; Veenstra, S.; Andriessen, R. Small 2018, 14, 1702775.  doi: 10.1002/smll.201702775

    106. [106]

      Cristina, R. C.; Malinkiewicz, O.; Soriano, A.; Espallargas, G. M.; Garcia, A.; Reinecke, P.; Kroyer, T.; Dar, M. I.; Nazeeruddine, M. K.; Bolink, H. J. Energy Environ. Sci. 2014, 7, 994.  doi: 10.1039/c3ee43619e

    107. [107]

      Kaltenbrunner, M.; Adam, G.; Głowacki, E. D.; Drack, M.; Schwödiauer, R.; Leonat, L.; Apaydin, D. H.; Groiss, H.; Scharber, M. C.; White, M. S.; Sariciftci, N. S.; Bauer, S. Nat. Mater. 2015, 14, 1032.  doi: 10.1038/nmat4388

  • 加载中
    1. [1]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    2. [2]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    3. [3]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    4. [4]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    5. [5]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    6. [6]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    7. [7]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    8. [8]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    9. [9]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    10. [10]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    11. [11]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    12. [12]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    13. [13]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    14. [14]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    15. [15]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    16. [16]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    17. [17]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    18. [18]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    19. [19]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    20. [20]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

Metrics
  • PDF Downloads(257)
  • Abstract views(7255)
  • HTML views(3034)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return