Citation: Yang Qi-Liang, Wang Xiang-Yang, Weng Xin-Jun, Yang Xiang, Xu Xue-Tao, Tong Xiaofeng, Fang Ping, Wu Xin-Yan, Mei Tian-Sheng. Palladium-Catalyzed ortho-Selective C-H Chlorination of Arenes Using Anodic Oxidation[J]. Acta Chimica Sinica, ;2019, 77(9): 866-873. doi: 10.6023/A19040135 shu

Palladium-Catalyzed ortho-Selective C-H Chlorination of Arenes Using Anodic Oxidation

  • Corresponding author: Wu Xin-Yan, xinyanwu@ecust.edu.cn Mei Tian-Sheng, mei7900@sioc.ac.cn
  • Received Date: 19 April 2019
    Available Online: 8 September 2019

    Fund Project: the National Natural Science Foundation of China 21772222the National Natural Science Foundation of China 21821002Project supported by the National Natural Science Foundation of China (Nos. 21772222 and 21821002) and the Department of Education of Guangdong Province (Nos. 2017KTSCX185, 2017KSYS010, 2016KCXTD005)the Department of Education of Guangdong Province 2016KCXTD005the Department of Education of Guangdong Province 2017KSYS010the Department of Education of Guangdong Province 2017KTSCX185

Figures(6)

  • Aryl halides are key building blocks in organic synthesis for the construction of valuable natural products, medicinal and agricultural chemicals via transition metal-catalyzed coupling or substitution reactions. Halogenation is one of the most fundamental and important reactions in organic synthesis. Electrochemical transition-metal-catalyzed C-H functionalization has emerged as a powerful tool for molecular synthesis with the prospect of avoiding the use of costly and toxic oxidants or reductants, thereby reducing the footprint of undesirable, toxic byproducts. The palladium-catalyzed electrochemical C-H chlorination of benzamide derivatives directed by PIP amine directing group under divided cells has been demonstrated, in which readily available inorganic halides salts serve as halogen sources. The reaction features a broad substrate scope, high functional group tolerance, and compatibility of thiophene substrates. This reaction could be conducted on a gram scale, which is important for future application. Additionally, the sequential bromination and chlorination of C(sp2)-H bond constructs highly functionalized aromatic carboxylic acid derivatives. The typical procedure is as follows:The electrolysis was carried out in an H-type divided cell (anion-exchange membrane), with a RVC anode (10 mm×10 mm×12 mm) and a platinum cathode (10 mm×10 mm×0.2 mm). The anodic chamber was charged with Pd(OAc)2 (5.6 mg, 0.025 mmol, 10 mol%) and benzamide derivative (0.25 mmol, 1.0 equiv.) and dissolved in DMF (10 mL). LiCl (847.8 mg, 20.0 mmol) was added in the cathodic chamber and dissolved in water (10 mL). Then the reaction mixture was electrolyzed under a constant current of 5 mA at 90℃ until the complete consumption of the starting material as monitored by TLC or 1H NMR. After the reaction, EtOAc (50 mL) was added to dilute the mixture and then washed with water (20 mL×3) and then with brine (20 mL). The organic fraction was dried over Na2SO4 and concentrated. The resulting residue was purified by silica gel flash chromatography to give the chlorination product.
  • 加载中
    1. [1]

      (a) Butler, A.; Walker, J. V. Chem. Rev. 1993, 93, 1937; (b) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew Chem., Int. Ed. 2005, 44, 4442.

    2. [2]

      For selected reviews, see: (a) Hassan, J.; Se'vignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359; (b) Littke, A. F.; Fu, G. C. Angew Chem., Int. Ed. 2002, 41, 4176; (c) Corbet, J. P.; Mignani, G. Chem. Rev. 2006, 106, 2651; (d) Yin, L.-X.; Liebscher, J. Chem. Rev. 2007, 107, 133.

    3. [3]

      For a review on an ortho-lithiation approach, see: Snieckus, V. Chem. Rev. 1990, 90, 879.

    4. [4]

      Hodgson, H. H. Chem. Rev. 1947, 40, 251.  doi: 10.1021/cr60126a003

    5. [5]

      De La Mare, P. B. D. Electrophilic Halogenation, Cambridge University Press, New York, 1976.

    6. [6]

    7. [7]

    8. [8]

      (a) Chen, X.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc. 2006, 128, 6790; (b) Wang, W.; Pan, C.; Chen, F.; Cheng, J. Chem. Commun. 2011, 47, 3978; (c) Mo, S.; Zhu, Y.; Shen, Z. Org. Biomol. Chem. 2013, 11, 2756; (d) Du, Z.-J.; Gao, L.-X.; Lin, Y.-J.; Han, F.-S. ChemCatChem 2014, 6, 123; (e) Hufman, L. M.; Stahl, S. S. J. Am. Chem. Soc. 2008, 130, 9196; (f) King, A. E.; Huffman, L. M.; Casitas, A.; Costas, M.; Ribas, X.; Stahl, S. S. J. Am. Chem. Soc. 2010, 132, 12068; (g) Wang, Z.-L.; Zhao, L.; Wang, M.-X. Org. Lett. 2011, 13, 6560; (h) Wang, Z.-L.; Zhao, L.; Wang, M.-X. Org. Lett. 2012, 14, 1472; (i) Casitas, A.; Ribas, X. Chem. Sci. 2013, 4, 2301; (j) Zhang, H.; Yao, B.; Zhao, L.; Wang, D.-X.; Xu, B.-Q.; Wang, M.-X. J. Am. Chem. Soc. 2014, 136, 6326; (k) Truong, T.; Klimovica, K.; Daugulis, O. J. Am. Chem. Soc. 2013, 135, 9342; (l) Suess, A. M.; Ertem, M. Z. C.; Cramer, J.; Stahl, S. S. J. Am. Chem. Soc. 2013, 135, 9797; (m) Zhang, Q.; Yin, X.-S.; Zhao, S.; Fang, S.-L.; Shi, B.-F. Chem. Commun. 2014, 50, 8353.

    9. [9]

      For selected examples of rhodium-catalyzed direct halogenation of C-H bonds, see: (a) Schroder, N.; Wencel-Delord, J.; Glorius, F. J. Am. Chem. Soc. 2012, 134, 8298; (b) Hwang, H.; Kim, J.; Jeong, J.; Chang, S. J. Am. Chem. Soc. 2014, 136, 10770; (c) Qian, G.; Hong, X.; Liu, B.; Mao, H.; Xu, B. Org. Lett. 2014, 16, 5294.

    10. [10]

      For an example of ruthenilum-catalyzed ortho-halogenation, see: Wang, L.-H.; Ackermann, L. Chem. Commun. 2014, 50, 1083.

    11. [11]

    12. [12]

      For recent reviews on organic electrochemistry, see: (a) Yuan, Y.; Cao, Y.; Qiao, J.; Lin, Y.; Jiang, X.; Weng, Y.; Tang, S.; Lei, A. Chin. J. Chem. 2019, 37, 49; (b) Tang, S.; Liu, Y.; Lei, A. Chem 2018, 4, 27; (c) Liu, K.; Song, C.; Lei, A. Org. Biomol. Chem. 2018, 16, 2375; (d) Sauer, G. S.; Lin, S. ACS Catal. 2018, 8, 5175; (e) Parry, J.; Fu, N.; Lin, S. Synlett 2018, 29, 257; (f) Nutting, J. E.; Rafiee, M.; Stahl, S. S. Chem. Rev. 2018, 118, 4834; (g) Jiang, Y.; Xu, K.; Zeng, C. Chem. Rev. 2018, 118, 4485; (h) Waldvogel, S. R.; Lips, S.; Selt, M.; Riehl, B.; Kampf, C. Chem. Rev. 2018, 118, 6706; (i) Moeller, K. D. Chem. Rev. 2018, 118, 4817; (j) Yang, Q.-L.; Fang, P.; Mei, T.-S. Chin. J. Chem. 2018, 36, 338; (k) Yan, M.; Kawamata, Y.; Baran, P. S. Chem. Rev. 2017, 117, 13230; (l) Horn, E. J.; Rosen, B. R.; Baran, P. S. ACS Cent. Sci. 2016, 2, 302; (m) Hou, Z.-W.; Mao, Z.-Y.; Xu, H.-C. Synlett 2017, 28, 1867; (n) Francke, R.; Little, R. D. Chem. Soc. Rev. 2014, 43, 2492.

    13. [13]

      For recent examples on organic electrochemistry, see: (a) Yuan, Y.; Yao, A.; Zheng, Y.; Gao, M.; Zhou, Z.; Qiao, J.; Hu, J.; Ye, B.; Zhao, J.; Wen, H.; Lei, A. iScience 2019, 12, 293; (b) Wang, P.; Tang, S.; Huang, P. F.; Lei, A. W. Angew. Chem., Int. Ed. 2017, 56, 3009; (c) Zhang, Z.; Zhang, L.; Cao, Y.; Li, F.; Bai, G.; Liu, G.; Yang, Y.; Mo, F. Org. Lett. 2019, 21, 762; (d) Yan, H.; Hou, Z.-W.; Xu, H.-C. Angew. Chem., Int. Ed. 2019, 58, 4592; (e) Hou, Z.-W.; Mao, Z.-Y.; Zhao, H.-B.; Melcamu, Y. Y.; Lu, X.; Song, J.; Xu, H.-C. Angew. Chem., Int. Ed. 2016, 55, 9168; (f) Rafiee, M.; Wang, F.; Hruszkewycz, D. P.; Stahl, S. S. J. Am. Chem. Soc. 2018, 140, 22; (g) Wang, H.; Zhang, J.; Tan, J.; Xin, L.; Li, Y.; Zhang, S.; Xu, K. Org. Lett. 2018, 20, 2505; (h) Lin, D. Z.; Huang, J. M. Org. Lett. 2018, 20, 2112; (i) Ye, Z.; Ding, M.; Wu, Y.; Li, Y.; Hua, W.; Zhang, F. Green Chem. 2018, 20, 1732; (j) Wang, Q.-Q.; Xu, K.; Jiang, Y.-Y.; Liu, Y.-G.; Sun, B.-G.; Zeng, C.-C. Org. Lett. 2017, 19, 5517; (k) Wiebe, A.; Lips, S.; Schollmeyer, D.; Franke, R.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2017, 56, 14727; (l) Kawamata, Y.; Yan, M.; Liu, Z.; Bao, D.-H.; Chen, J.; Starr, J.; Baran, P. S. J. Am. Chem. Soc. 2017, 139, 7448; (m) Horn, E. J.; Rosen, B. R.; Chen, Y.; Tang, J.; Chen, K.; Eastgate, M. D.; Baran, P. S. Nature 2016, 533, 77.

    14. [14]

    15. [15]

      For selected examples on transition-metal-catalyzed electrochemical C-H functionalization, see: (a) Qiu, Y.; Stangier, M.; Meyer, T. H.; Oliveira, J. C. A.; Ackermann, L. Angew. Chem. Int. Ed. 2018, 57, 14179; (b) Sauermann, N.; Mei, R.; Ackermann, L. Angew. Chem. Int. Ed. 2018, 57, 5090; (c) Gao, X.; Wang, P.; Zeng, L.; Tang, S.; Lei, A. J. Am. Chem. Soc. 2018, 140, 4195; (d) Tang, S.; Wang, D.; Liu, Y.; Liu, L.; Lei, A. Nature Commun. 2018, 9, 798; (e) Xu, F.; Li, Y.-J.; Huang, C.; Xu, H.-C. ACS Catal. 2018, 8, 3820; (f) Shrestha, A.; Lee, M.; Dunn, A. L.; Sanford, M. S. Org. Lett. 2018, 20, 204; (g) Grayaznova, T. V.; Dudkina, Y. B.; Islamov, D. R.; Kataeva, O. N.; Sinyashin, O. G.; Vicic, D. A.; Budnikova, Y. Н. J. Organomet. Chem. 2015, 785, 68; (h) Amatore, C.; Cammoun, C.; Jutand, A. Adv. Synth. Catal. 2007, 349, 292; (i) Freund, M. S.; Labinger, J. A.; Lewis, N. S.; Bercaw, J. E. J. Mol. Catal. 1994, 87, L11.

    16. [16]

      Kakiuchi, F.; Kochi, T.; Mutsutani, H.; Kobayashi, N.; Urano, S.; Sato, M.; Nishiyama, S.; Tanabe, T. J. Am. Chem. Soc. 2009, 131, 11310.  doi: 10.1021/ja9049228

    17. [17]

      (a) Yang, Q.-L.; Wang, X.-Y.; Wang, T.-L.; Yang, X.; Liu, D.; Tong, X.; Wu, X.-Y.; Mei, T.-S. Org. Lett. 2019, 21, 2645; (b) Yang, Q.-L.; Li, C.-Z.; Zhang, L.-W.; Li, Y.-Y.; Tong, X.; Wu, X.-Y.; Mei, T.-S. Organometallics 2019, 38, 1208; (c) Yang, Q.-L.; Wang, X.-Y.; Lu, J.-Y.; Zhang, L.-P.; Fang, P.; Mei, T.-S. J. Am. Chem. Soc. 2018, 140, 11487; (d) Li, Y.-Q.; Yang, Q.-L.; Fang, P.; Mei, T.-S.; Zhang, D. Org. Lett. 2017, 19, 2905; (e) Ma, C.; Zhao, C.-Q.; Li, Y.-Q.; Zhang, L.-P.; Xu, X.; Zhang, K.; Mei, T.-S. Chem. Commun. 2017, 53, 12189; (f) Yang, Q.-L.; Li, Y.-Q.; Ma, C.; Fang, P.; Zhang, X.-J.; Mei, T.-S. J. Am. Chem. Soc. 2017, 139, 3293.

    18. [18]

      During this manuscript preparation, Kakiuchi reported similar work using benzamide derivatives: Konishi, M.; Tsuchida, K.; Sano, K.; Kochi, T.; Kakiuchi, F. J. Org. Chem. 2017, 82, 8716. However, the work was independently carried out. The reaction conditions and directing groups used in these two studies are different.

    19. [19]

      (a) Sun, H.; Yu, L.; Jin, X.; Hu, X.; Wang, D.; Chen, G. Z. Electrochem. Commun. 2005, 7, 685; (b) Yu, L.; Jin, X.; Chen, G. Z. J. Electroanal. Chem. 2013, 688, 371.

  • 加载中
    1. [1]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    2. [2]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    3. [3]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    4. [4]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    5. [5]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    6. [6]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    7. [7]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    8. [8]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    9. [9]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    10. [10]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    11. [11]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    12. [12]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    13. [13]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    14. [14]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    15. [15]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    16. [16]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    17. [17]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    18. [18]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    19. [19]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    20. [20]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

Metrics
  • PDF Downloads(16)
  • Abstract views(1588)
  • HTML views(367)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return