Citation: Wu Zhuomin, Shi Yong, Li Chunyan, Niu Danyang, Chu Qi, Xiong Wei, Li Xinyong. Synthesis of Bimetallic MOF-74-CoMn Catalyst and Its Application in Selective Catalytic Reduction of NO with CO[J]. Acta Chimica Sinica, ;2019, 77(8): 758-764. doi: 10.6023/A19040129 shu

Synthesis of Bimetallic MOF-74-CoMn Catalyst and Its Application in Selective Catalytic Reduction of NO with CO

  • Corresponding author: Shi Yong, sys-99@163.com
  • Received Date: 11 April 2019
    Available Online: 8 August 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21677022)the National Natural Science Foundation of China 21677022

Figures(11)

  • A series of bimetallic MOF-74-CoMn catalysts with different metal ratios have been successfully synthesized by hydrothermal method and applied in selective catalytic reduction of NO with CO (CO-SCR). The experimental procedure for the preparation of MOF-74-CoMn catalyst is as follows:The reaction solution was a 3.28 mmol mixture of Co(NO3)2·6H2O and Mn(NO3)2·6H2O, 1.09 mmol 2, 5-dihydroxyterephthalic acid (H4DOBDC) and 90 mL ethanol-DMF-water. The molar ratio of mixture (Co/Mn) was 1:0, 1:1, 1:2, 1:4, 1:6, respectively. The reactant solution was ultrasonically stired for 30 min until homogeneous. Then, the mixture was transferred into a 100 mL Teflon autoclave then kept in an oven at 100℃ for 24 h. Finally, after purified with DMF and methanol, the products were dried in a vacuum oven at 80℃ for 24 h to obtain a purple MOF-74-CoMn catalyst, which were stored in vacuum or an inert atmosphere. The prepared sample is referred to as MOF-74-Co1Mnx, where x represents a molar ratio of Co to Mn is 1:x (x=0, 1, 2, 4, 6). The SCR catalytic activities were carried out in a fixed-bed flow reactor in gas stream. The experimental results show that the NOx conversion rate of bimetallic MOF-74-CoMn catalyst is generally higher than that of single metal MOF-74-Co catalyst, and their reaction temperature window is wider. Especially, MOF-74-Co1Mn2 exhibited the highest selective catalytic reduction of NO with CO (CO-SCR) performance which is close to 100% with a temperature range from 175 to 275℃. Further, the bimetallic MOFs catalysts were characterized by X-ray powder diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), N2 adsorption/desorption, X-ray photoelectron spectroscopy (XPS), Hydrogen-temperature programed reduction (H2-TPR) and Infrared spectroscopy (FTIR) techniques. The results showed that the synergistic effect between Co and Mn metals could obviously promote the formation of unsaturated metal sites and oxygen vacancies, thereby promoting their catalytic reduction efficiency of selective catalytic reduction of NO with CO (CO-SCR).
  • 加载中
    1. [1]

      Qu, Y.; An, J. L.; He, Y. J.; Zheng, J. J. Environ. Sci. 2016, 44, 13.  doi: 10.1016/j.jes.2015.08.028

    2. [2]

      Saikawa, E.; Kim, H.; Zhong, M.; Avramov, A.; Zhao, Y.; Janssens-Maenhout, G.; Kurokawa, J.; Klimont, Z.; Wagner, F.; Naik, V.; Horowitz, L. W.; Zhang, Q. Atmos. Chem. Phys. 2017, 17, 6393.  doi: 10.5194/acp-17-6393-2017

    3. [3]

      Hamada, H.; Hanedab, M. Appl. Catal. A 2012, 421, 1.

    4. [4]

      Skalska, K.; Miller, J. S.; Ledakowicz, S. Sci. Total Environ. 2010, 408, 3976.  doi: 10.1016/j.scitotenv.2010.06.001

    5. [5]

      Liu, T. K.; Qian, J. N.; Yao, Y. Y.; Shi, Z. F.; Han, L. Y.; Liang, C. Y.; Li, B.; Dong, L. H.; Fan, M. G.; Zhang, L. L. J. Mol. Catal. A:Chem. 2017, 430, 43.

    6. [6]

      Li, S. S; Wang, F. Z. R.; Liu, Y. M.; Cao, Y. Chin. J. Chem. 2017, 35, 591.  doi: 10.1002/cjoc.201600715

    7. [7]

      Shin, H. U.; Lolla, D.; Nikolov, Z.; Chase, G. G. J. Ind. Eng. Chem. 2016, 33, 91.  doi: 10.1016/j.jiec.2015.09.020

    8. [8]

      Liu, J.; Li, X. Y.; Zhao, Q. D.; Ke, J.; Xiao, H. N.; Lv, X. J.; Liu, S. M.; Tadéc, M.; Wang, S. B. Appl. Catal. B 2017, 200, 297.  doi: 10.1016/j.apcatb.2016.07.020

    9. [9]

      Lee, Y. R.; Kim, J.; Ahn, W. S. Korean J. Chem. Eng. 2013, 30, 1667.  doi: 10.1007/s11814-013-0140-6

    10. [10]

      Wang, J. H.; Zhao, H. W.; Haller, G.; Li, Y. D. Appl. Catal. B 2017, 202, 346.  doi: 10.1016/j.apcatb.2016.09.024

    11. [11]

      Cai, S. X.; Liu, J.; Zha, K. W.; Li, H. R.; Shi, L. Y.; Zhang, D. S. Nanoscale 2017, 9, 5648.  doi: 10.1039/C6NR09917C

    12. [12]

      Shi, Y.; Tang, X. L.; Yi, H. L.; Gao, F. Y.; Zhao, S. Z.; Wang, J. G.; Yang, K.; Zhang, R. C. Ind. Eng. Chem. Res. 2019, 58, 3606.  doi: 10.1021/acs.iecr.8b05223

    13. [13]

      Shen, Q.; Zhang, L. Y.; Sun, N. N.; Wang, H.; Zhong, L. S.; He, C.; Wei, W.; Sun, Y. H. Chem. Eng. J. 2017, 322, 46.  doi: 10.1016/j.cej.2017.02.148

    14. [14]

      Cheng, X. X.; Bi, X. T. Particuology 2014, 16, 1.  doi: 10.1016/j.partic.2014.01.006

    15. [15]

      Dai, X. X.; Jiang, W. Y.; Wang, W. L.; Weng, X, L.; Shang, Y.; Xue, Y. H.; Wu, Z. B. Chin. J. Catal. 2018, 39, 728.  doi: 10.1016/S1872-2067(17)63008-0

    16. [16]

      Zhang, L.; Shi L. Y.; Huang L.; Zhang, J. P.; Gao, R. H.; Zhang, D. S. ACS Catal. 2014, 4, 1753.  doi: 10.1021/cs401185c

    17. [17]

      Liu, Z. Z.; Shi, Y.; Li, C. Y.; Zhao, Q. D.; Li, X. Y. Acta Phys.-Chim. Sin. 2015, 31, 9.

    18. [18]

      Huang, G.; Chen, Y. Z.; Jiang, H. L. Acta Chim. Sinica 2016, 74, 113.  doi: 10.3969/j.issn.0253-2409.2016.01.016
       

    19. [19]

      Xiao, J. D.; Jiang, H. L. Acc. Chem. Res. 2019, 52, 356.  doi: 10.1021/acs.accounts.8b00521

    20. [20]

      Jiao, L.; Wang, Y.; Jiang, H. L.; Xu, Q. Adv. Mater. 2018, 30, 1703663.  doi: 10.1002/adma.201703663

    21. [21]

      Adhikari, A. K.; Lin, K. S. Chem. Eng. J. 2016, 284, 1348.  doi: 10.1016/j.cej.2015.09.086

    22. [22]

      Yan, L. T.; Dai, P. C.; Wang, Y.; Gu, X.; Li, L. J.; Cao, L.; Zhao, X. B. ACS Appl. Mater. Interfaces 2017, 9, 11642.  doi: 10.1021/acsami.7b01037

    23. [23]

      Sun, D. R.; Ye, L.; Sun, F. X.; García, H.; Li, Z. H. Inorg. Chem. 2017, 56, 5203.  doi: 10.1021/acs.inorgchem.7b00333

    24. [24]

      Pliekhov, O.; Pliekhova, O.; Lavrenčič štangar, U.; Logar, N. Z. Catal. Commun. 2018, 110, 88.  doi: 10.1016/j.catcom.2018.03.021

    25. [25]

      Jiang, H. X.; Niu, Y.; Wang, Q. Y.; Chen, Y. F.; Zhang, M. H. Catal. Commun. 2018, 113, 46.  doi: 10.1016/j.catcom.2018.05.017

    26. [26]

      Chen, S.; Xue, M.; Li, Y. Q.; Pan, Y.; Zhu, L. K.; Qiu, S. L. J. Mater. Chem. 2015, 3, 20145.  doi: 10.1039/C5TA02557E

    27. [27]

      Liu, T. K.; Yao, Y. Y.; Wei, L. Q.; Shi, Z. F.; Han, L. Y.; Yuan, H. X.; Li, B.; Dong, L. H.; Wang, F.; Sun, C. Z. J. Phys. Chem. C 2017, 121, 12757.  doi: 10.1021/acs.jpcc.7b02052

    28. [28]

      Kim, S. H.; Lee, Y. J.; Kim, D. H.; Lee, Y. J. ACS Appl. Mater. Interfaces 2018, 10, 660.  doi: 10.1021/acsami.7b15499

    29. [29]

      Nguyen, H. T. T.; Doan, D. N. A.; Truong, T. J. Mol. Catal. A:Chem. 2017, 426, 141.  doi: 10.1016/j.molcata.2016.11.009

    30. [30]

      Liu, K. J.; Yu, Q. B.; Liu, J. L.; Wang, K.; Han, Z. C.; Xuan, Y. N.; Qin, Q. New J. Chem. 2017, 41, 13993.  doi: 10.1039/C7NJ02694C

    31. [31]

      Hu, H.; Cai, S. X.; Li, H. R.; Huang, L.; Shi, L. Y.; Zhang, D. S. ACS Catal. 2015, 5, 6069.  doi: 10.1021/acscatal.5b01039

    32. [32]

      Qin, Y. L.; Huang, L.; Zheng, J. X.; Ren, Q. Inorg. Chem. Commun. 2016, 72, 78.  doi: 10.1016/j.inoche.2016.08.018

    33. [33]

      Gao, F. Y.; Tang, X. L.; Yi, H. H.; Li, J. Y.; Zhao, S. Z.; Wang, J. G.; Chu, C.; Li, C. L. Chem. Eng. J. 2017, 317, 20.  doi: 10.1016/j.cej.2017.02.042

    34. [34]

      Dietzel, P. D. C.; Morita, Y.; Blom, R.; Fjellvag, H. Angew. Chem. Int. Ed. 2005, 44, 6354.  doi: 10.1002/anie.200501508

    35. [35]

      Yan, L. T.; Cao, L.; Dai, P. C.; Gu, X.; Liu, D. D.; Li, L. J.; Wang, Y.; Zhao, X. B. Adv. Funct. Mater. 2017, 27, 1703455.  doi: 10.1002/adfm.201703455

    36. [36]

      Jiang, H. X.; Wang, Q. Y.; Wang, H. Q.; Chen, Y. F.; Zhang, M. H. ACS Appl. Mater. Interfaces 2016, 8, 26817.  doi: 10.1021/acsami.6b08851

  • 加载中
    1. [1]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    2. [2]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    3. [3]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    4. [4]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    5. [5]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    6. [6]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    7. [7]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    8. [8]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    9. [9]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    10. [10]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    11. [11]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    12. [12]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    13. [13]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    14. [14]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    15. [15]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    16. [16]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    17. [17]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    18. [18]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    19. [19]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    20. [20]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

Metrics
  • PDF Downloads(112)
  • Abstract views(4218)
  • HTML views(1849)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return