Citation: Wu Yong, Ye Xin-Shan. Recent Advances in Chemical Synthesis of Polysaccharides[J]. Acta Chimica Sinica, ;2019, 77(7): 581-597. doi: 10.6023/A19040128 shu

Recent Advances in Chemical Synthesis of Polysaccharides

  • Corresponding author: Ye Xin-Shan, xinshan@bjmu.edu.cn
  • Received Date: 11 April 2019
    Available Online: 6 July 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21738001)the National Natural Science Foundation of China 21738001

Figures(22)

  • Polysaccharides are a class of bio-macromolecules with highly complex structures that are widely found in living organisms such as microorganisms, plants and animals. Polysaccharides serve not only as structural components and energy sources of cells, but also as important signaling molecules which are involved in many key biological processes. Studies on polysaccharide-mediated biological processes require access to structurally defined molecules, which approach the size and complexity of those found in nature, but naturally-occurring polysaccharides usually exist in microheterogeneous forms, making it difficult or even impossible to isolate pure polysaccharides from natural sources in most cases. Chemical synthesis represents a reliable solution to this problem, which can provide polysaccharide samples with defined chemical structures for functional studies and even a library of analogs of natural glycans for structure-activity relationship investigations. But unlike oligonucleotides and peptides, which can already be obtained by automated synthesizers in a very short of time, the chemical synthesis of glycans remains a great challenge for synthetic chemists. The major challenge for glycan synthesis lies in the need to handle both stereo-and regio-chemistry in the construction of each glycosyl linkage, and the extensive protecting-group manipulations as well as much intermediate separation make it a tedious and time-consuming process. Over the past decades, carbohydrate chemists have developed many glycosylation reactions. A series of strategies for glycan assembly have been also established. The advances in both synthetic methods and strategies have significantly increased the synthetic efficiency of carbohydrate molecules, and many great accomplishments in the field of polysaccharide synthesis have been witnessed in recent decades. Some representative methods and strategies, and their successful applications in the chemical synthesis of complex polysaccharides are summarized in this review.
  • 加载中
    1. [1]

      Varki, A. Glycobiology 1993, 3, 97.  doi: 10.1093/glycob/3.2.97

    2. [2]

      Krasnova, L.; Wong, C.-H. Annu. Rev. Biochem. 2016, 85, 599.  doi: 10.1146/annurev-biochem-060614-034420

    3. [3]

      Boltje, T. J.; Buskas, T.; Boons, G.-J. Nat. Chem. 2009, 1, 611.  doi: 10.1038/nchem.399

    4. [4]

      Seeberger, P. H.; Werz, D. B. Nature 2007, 446, 1046.  doi: 10.1038/nature05819

    5. [5]

    6. [6]

      Bertozzi, C. R.; Kiessling, L. L. Science 2001, 291, 2357.  doi: 10.1126/science.1059820

    7. [7]

      Gabius, H.-J. The Sugar Code:Fundamentals of Glycosciences, John Wiley & Sons, New Jersey, 2011.

    8. [8]

      Tanaka, H.; Kawai, T.; Adachi, Y.; Hanashima, S.; Yamaguchi, Y.; Ohno, N.; Takahashi, T. Bioorg. Med. Chem. 2012, 20, 3898.  doi: 10.1016/j.bmc.2012.04.017

    9. [9]

      Petitou, M.; Duchaussoy, P.; Driguez, P.-A.; Hérault, J.-P.; Lormeau, J.-C.; Herbert, J.-M. Bioorg. Med. Chem. Lett. 1999, 9, 1155.  doi: 10.1016/S0960-894X(99)00155-9

    10. [10]

      Wang, L.; Feng, S.; An, L.; Gu, G.; Guo, Z. J. Org. Chem. 2015, 80, 10060.  doi: 10.1021/acs.joc.5b01686

    11. [11]

      (a) Zhu, X.; Schmidt, R. R. Angew. Chem. Int. Ed. 2009, 48, 1900; (b) Hsu, C.-H.; Hung, S.-C.; Wu, C.-Y.; Wong, C.-H. Angew. Chem. Int. Ed. 2011, 50, 11872; (c) Seeberger, P. H. Acc. Chem. Res. 2015, 48, 1450; (d) Kulkarni, S. S.; Wang, C.-C.; Sabbavarapu, N. M.; Podilapu, A. R.; Liao, P.-H.; Hung, S.-C. Chem. Rev. 2018, 118, 8025.

    12. [12]

      Michael, A. Am. Chem. J. 1879, 1, 305.  doi: 10.1021/ja02151a603

    13. [13]

      Toshima, K.; Tatsuta, K. Chem. Rev. 1993, 93, 1503.  doi: 10.1021/cr00020a006

    14. [14]

      (a) Garcia, B. A.; Poole, J. L.; Gin, D. Y. J. Am. Chem. Soc. 1997, 119, 7597; (b) Garcia, B. A.; Gin, D. Y. J. Am. Chem. Soc. 2000, 122, 4269.

    15. [15]

      (a) Schmidt, R. R.; Michel, J. Angew. Chem. Int. Ed. 1980, 19, 731; (b) Schmidt, R. R. Angew. Chem. Int. Ed. 1986, 25, 212.

    16. [16]

      (a) Codée, J. D. C.; Litjens, R. E. J. N.; van den Bos, L. J.; Overkleeft, H. S.; van der Marel, G. A. Chem. Soc. Rev. 2005, 34, 769; (b) Lian, G.; Zhang, X.; Yu, B. Carbohydr. Res. 2015, 403, 13.

    17. [17]

      Mootoo, D. R.; Konradsson, P.; Udodong, U.; Fraser-Reid, B. J. Am. Chem. Soc. 1988, 110, 5583.  doi: 10.1021/ja00224a060

    18. [18]

      Danishefsky, S. J.; Bilodeau, M. T. Angew. Chem. Int. Ed. 1996, 35, 1380.  doi: 10.1002/(ISSN)1521-3773

    19. [19]

      Plante, O. J.; Palmacci, E. R.; Andrade, R. B.; Seeberger, P. H. J. Am. Chem. Soc.2001, 123, 9545.  doi: 10.1021/ja016227r

    20. [20]

      Yu, B. Acc. Chem. Res. 2018, 51, 507.  doi: 10.1021/acs.accounts.7b00573

    21. [21]

      Koenigs, W.; Knorr, E. Ber. Dtsch. Chem. Ges. 1901, 34, 957.  doi: 10.1002/(ISSN)1099-0682

    22. [22]

      Zemplén, G.; Gerecs, A. Ber. Dtsch. Chem. Ges. 1930, 63, 2720.  doi: 10.1002/cber.v63:10

    23. [23]

      Helferich, B.; Wedemeyer, K. F. Justus Liebigs Ann. Chem. 1949, 563, 139.  doi: 10.1002/(ISSN)1099-0690

    24. [24]

      Igarashi, K.; Irisawa, J.; Honma, T. Carbohydr. Res. 1975, 39, 213.  doi: 10.1016/S0008-6215(00)86131-5

    25. [25]

      Kronzer, F. J.; Schuerch, C. Carbohydr. Res. 1973, 27, 379.  doi: 10.1016/S0008-6215(00)81320-8

    26. [26]

      Wulff, G.; Röhle, G.; Krüger, W. Chem. Ber. 1972, 105, 1097.  doi: 10.1002/(ISSN)1099-0682

    27. [27]

      Yamada, H.; Hayashi, T. Carbohydr. Res. 2002, 337, 581.  doi: 10.1016/S0008-6215(02)00029-0

    28. [28]

      Bernstein, S.; Conrow, R. B. J. Org. Chem. 1971, 36, 863.  doi: 10.1021/jo00806a001

    29. [29]

      Nishizawa, M.; Garcia, D. M.; Shin, T.; Yamada, H. Chem. Pharm. Bull. 1993, 41, 784.  doi: 10.1248/cpb.41.784

    30. [30]

      Mukaiyama, T.; Murai, Y.; Shoda, S. Chem. Lett. 1981, 10, 431.  doi: 10.1246/cl.1981.431

    31. [31]

      Mukaiyama, T.; Hashimoto, Y.; Shoda, S. Chem. Lett. 1983, 12, 935.  doi: 10.1246/cl.1983.935

    32. [32]

      Matsumoto, T.; Maeta, H.; Suzuki, K. Tetrahedron Lett. 1988, 29, 3567.  doi: 10.1016/0040-4039(88)85294-8

    33. [33]

      Hashimoto, S.; Hayashi, M.; Noyori, R. Tetrahedron Lett. 1984, 25, 1379.  doi: 10.1016/S0040-4039(01)80163-5

    34. [34]

      Mukaiyama, T.; Jona, H.; Takeuchi, K. Chem. Lett. 2000, 29, 696.  doi: 10.1246/cl.2000.696

    35. [35]

      Zhu, X.; Schmidt, R. R. Angew. Chem., Int. Ed. 2009, 48, 1900.  doi: 10.1002/anie.v48:11

    36. [36]

      El-Badry, M. H.; Gervay-Hague, J. Tetrahedron Lett. 2005, 46, 6727.  doi: 10.1016/j.tetlet.2005.07.129

    37. [37]

      (a) Lam, S. N.; Gervay-Hague, J. Carbohydr. Res. 2002, 337, 1953; (b) Lam, S. N.; Gervay-Hague, J. Org. Lett. 2002, 4, 2039; (c) Lam, S. N.; Gervay-Hague, J. J. Org. Chem. 2005, 70, 2387.

    38. [38]

      Sun, L.; Wu, X.; Xiong, D.-C.; Ye, X.-S. Angew. Chem. Int. Ed. 2016, 55, 8041.  doi: 10.1002/anie.201600142

    39. [39]

      Park, Y.; Harper, K. C.; Kuhl, N.; Kwan, E. E.; Liu, R. Y.; Jacobsen, E. N. Science 2017, 355, 162.  doi: 10.1126/science.aal1875

    40. [40]

      Schmidt, R. R.; Toepfer, A. Tetrahedron Lett. 1991, 32, 3353.  doi: 10.1016/S0040-4039(00)92704-7

    41. [41]

      Yu, B.; Tao, H. Tetrahedron Lett. 2001, 42, 2405.  doi: 10.1016/S0040-4039(01)00157-5

    42. [42]

      Ferrier, R. J.; Hay, R. W.; Vethaviyasar, N. Carbohydr. Res. 1973, 27, 55.  doi: 10.1016/S0008-6215(00)82424-6

    43. [43]

      Veeneman, G. H.; Van Leeuwen, S. H.; Van Boom, J. H. Tetrahedron Lett. 1990, 31, 1331.  doi: 10.1016/S0040-4039(00)88799-7

    44. [44]

      Konradsson, P.; Udodong, U. E.; Fraser-Reid, B. Tetrahedron Lett. 1990, 31, 4313.  doi: 10.1016/S0040-4039(00)97609-3

    45. [45]

      Andersson, F.; Fúgedi, P.; Garegg, P. J.; Nashed, M. Tetrahedron Lett. 1986, 27, 3919.  doi: 10.1016/S0040-4039(00)83917-9

    46. [46]

      Martichonok, V.; Whitesides, G. M. J. Org. Chem. 1996, 61, 1702.  doi: 10.1021/jo951711w

    47. [47]

      Crich, D.; Smith, M. J. Am. Chem. Soc. 2001, 123, 9015.  doi: 10.1021/ja0111481

    48. [48]

      Codée, J. D. C.; Litjens, R. E. J. N.; den Heeten, R.; Overkleeft, H. S.; van Boom, J. H.; van der Marel, G. A. Org. Lett. 2003, 5, 1519.  doi: 10.1021/ol034312t

    49. [49]

      Wang, C.; Wang, H.; Huang, X.; Zhang, L.-H.; Ye, X.-S. Synlett 2006, 2846.

    50. [50]

      Marra, A.; Mallet, J. M.; Amatore, C.; Sinaÿ, P. Synlett 1990, 572.  doi: 10.1055/s-1990-22045

    51. [51]

      (a) Mitsudo, K.; Kawaguchi, T.; Miyahara, S.; Matsuda, W.; Kuroboshi, M.; Tanaka, H. Org. Lett. 2005, 7, 4649; (b) Nokami, T.; Shibuya, A.; Tsuyama, H.; Suga, S.; Bowers, A. A.; Crich, D.; Yoshida, J. I. J. Am. Chem. Soc. 2007, 129, 10922.

    52. [52]

    53. [53]

      Goswami, M.; Ellern, A.; Pohl, N. L. B. Angew. Chem. Int. Ed. 2013, 52, 8441.  doi: 10.1002/anie.v52.32

    54. [54]

      Yamada, H.; Harada, T.; Miyazaki, H.; Takahashi, T. Tetrahedron Lett. 1994, 35, 3979.  doi: 10.1016/S0040-4039(00)76718-9

    55. [55]

      Zhang, Z.; Ollmann, I. R.; Ye, X.-S.; Wischnat, R.; Baasov, T.; Wong, C.-H. J. Am. Chem. Soc. 1999, 121, 734.  doi: 10.1021/ja982232s

    56. [56]

      Huang, X.; Huang, L.; Wang, H.; Ye, X.-S. Angew. Chem Int. Ed. 2004, 43, 5221.  doi: 10.1002/(ISSN)1521-3773

    57. [57]

      Plante, O. J.; Palmacci, E. R.; Seeberger, P. H. Science 2001, 291, 1523.  doi: 10.1126/science.1057324

    58. [58]

      Tanaka, H.; Adachi, M.; Tsukamoto, H.; Ikeda, T.; Yamada, H.; Takahashi, T. Org. Lett. 2002, 4, 4213.  doi: 10.1021/ol020150+

    59. [59]

      Yu, B.; Yu, H.; Hui, Y.; Han, X. Tetrahedron Lett. 1999, 40, 8591.  doi: 10.1016/S0040-4039(99)01839-0

    60. [60]

      Wang, P.; Lee, H.; Fukuda, M.; Seeberger, P. H. Chem. Commun. 2007, 1963.

    61. [61]

      Vohra, Y.; Buskas, T.; Boons, G.-J. J. Org. Chem. 2009, 74, 6064.  doi: 10.1021/jo901135k

    62. [62]

      (a) Hsu, C.-H.; Chu, K. C.; Lin, Y. S.; Han, J. L.; Peng, Y. S.; Ren, C. T.; Wong, C.-H. Chem. Eur. J. 2010, 16, 1754; (b) Tanaka, H.; Tateno, Y.; Nishiura, Y.; Takahashi, T. Org. Lett. 2008, 10, 5597; (c) Tanaka, H.; Adachi, M.; Takahashi, T. Chem. Eur. J. 2005, 11, 849.

    63. [63]

      (a) Dinkelaar, J.; Gold, H.; Overkleeft, H. S.; Codée, J. D.; van der Marel, G. A. J. Org. Chem. 2009, 74, 4208; (b) Hu, Y. P.; Lin, S. Y.; Huang, C. Y.; Zulueta, M. M. L.; Liu, J. Y.; Chang, W.; Hung, S.-C. Nat. Chem. 2011, 3, 557.

    64. [64]

      Sarkar, S.; Dutta, S.; Das, G.; Sen, A. K. Tetrahedron 2011, 67, 4118.  doi: 10.1016/j.tet.2011.03.109

    65. [65]

      Burkhart, F.; Zhang, Z.; Wacowich-Sgarbi, S.; Wong, C.-H. Angew. Chem. Int. Ed. 2001, 40, 1274.  doi: 10.1002/(ISSN)1521-3773

    66. [66]

      Tsai, B. L.; Han, J. L.; Ren, C. T.; Wu, C.-Y.; Wong, C.-H. Tetrahedron Lett. 2011, 52, 2132.  doi: 10.1016/j.tetlet.2010.11.055

    67. [67]

      Mong, K. K. T.; Wong, C.-H. Angew. Chem. Int. Ed. 2002, 41, 4087.  doi: 10.1002/1521-3773(20021104)41:21<4087::AID-ANIE4087>3.0.CO;2-X

    68. [68]

      Lee, J. C.; Wu, C.-Y.; Apon, J. V.; Siuzdak, G.; Wong, C.-H. Angew. Chem. Int. Ed. 2006, 45, 2753.  doi: 10.1002/(ISSN)1521-3773

    69. [69]

      Mong, T. K. K.; Lee, H. K.; Durón, S. G.; Wong, C.-H. PNAS 2003, 100, 797.  doi: 10.1073/pnas.0337590100

    70. [70]

      Polat, T.; Wong, C.-H. J. Am. Chem. Soc. 2007, 129, 12795.  doi: 10.1021/ja073098r

    71. [71]

      Hsu, Y.; Lu, X. A.; Zulueta, M. M. L.; Tsai, C. M.; Lin, K. I.; Hung, S.-C.; Wong, C.-H. J. Am. Chem. Soc. 2012, 134, 4549.  doi: 10.1021/ja300284x

    72. [72]

      Wang, Z.; Zhou, L.; El-Boubbou, K.; Ye, X.-S.; Huang, X. J. Org. Chem. 2007, 72, 6409.  doi: 10.1021/jo070585g

    73. [73]

      Li, Q.; Guo, Z. Org. Lett. 2017, 19, 6558.  doi: 10.1021/acs.orglett.7b03275

    74. [74]

      Huang, L.; Huang, X. Chem. Eur. J. 2007, 13, 529.  doi: 10.1002/(ISSN)1521-3765

    75. [75]

      Miermont, A.; Zeng, Y.; Jing, Y.; Ye, X.-S.; Huang, X. J. Org. Chem. 2007, 72, 8958.  doi: 10.1021/jo701694k

    76. [76]

      Wang, Z.; Xu, Y.; Yang, B.; Tiruchinapally, G.; Sun, B.; Liu, R.; Huang, X. Chem. Eur. J. 2010, 16, 8365.  doi: 10.1002/chem.v16:28

    77. [77]

      Sun, B.; Srinivasan, B.; Huang, X. Chem. Eur. J. 2008, 14, 7072.  doi: 10.1002/chem.v14:23

    78. [78]

      Wang, Y.-S.; Wu, Y.; Xiong, D.-C.; Ye, X.-S. Chin. J. Chem. 2019, 37, 42.  doi: 10.1002/cjoc.v37.1

    79. [79]

      (a) Gao, J.; Guo, Z. J. Org. Chem. 2013, 78, 12717; (b) Gao, J.; Liao, G.; Wang, L.; Guo, Z. Org. Lett. 2014, 16, 988; (c) Gao, J.; Guo, Z. Org. Lett. 2016, 18, 5552. (d) Wang, D.; Xiong, D.-C.; Ye, X.-S. Chin. Chem. Lett. 2018, 29, 1340; (e) Wu, Y.; Xiong, D.-C.; Chen, S.-C.; Wang, Y.-S.; Ye, X.-S. Nat. Commun. 2017, 8, 14851.

    80. [80]

      Werz, D. B.; Castagner, B.; Seeberger, P. H. J. Am. Chem. Soc. 2007, 129, 2770.  doi: 10.1021/ja069218x

    81. [81]

      Routenberg, L. K.; Seeberger, P. H. Angew. Chem. Int. Ed. 2004, 43, 602.  doi: 10.1002/(ISSN)1521-3773

    82. [82]

      Ratner, D. M.; Swanson, E. R.; Seeberger, P. H. Org. Lett. 2003, 5, 4717.  doi: 10.1021/ol035887t

    83. [83]

      Codée, J. D. C.; Kröck, L.; Castagner, B.; Seeberger, P. H. Chem. Eur. J. 2008, 14, 3987.  doi: 10.1002/chem.v14:13

    84. [84]

      (a) Walvoort, M. T. C.; Volbeda, A. G.; Reintjens, N. R. M.; van den Elst, H.; Plante, O. J.; Overkleeft, H. S.; Codée, J. D. Org. Lett. 2012, 14, 3776; (b) Hahm, H. S.; Broecker, F.; Kawasaki, F.; Mietzsch, M.; Heilbronn, R.; Fukuda, M.; Seeberger, P. H. Chem 2017, 2, 114.

    85. [85]

      Hewitt, M. C.; Snyder, D. A.; Seeberger, P. H. J. Am. Chem. Soc. 2002, 124, 13434.  doi: 10.1021/ja027538k

    86. [86]

      Matsuzaki, Y.; Ito, Y.; Nakahara, Y.; Ogawa, T. Tetrahedron Lett. 1993, 34, 1061.  doi: 10.1016/S0040-4039(00)77492-2

    87. [87]

      Hansen, S. U.; Miller, G. J.; Cliff, M. J.; Jayson, G. C.; Gardiner, J. M. Chem. Sci. 2015, 6, 6158.  doi: 10.1039/C5SC02091C

    88. [88]

      Li, A.; Kong, F. Bioorg. Med. Chem. 2005, 13, 839.  doi: 10.1016/j.bmc.2004.10.035

    89. [89]

      Pozsgay, V. Angew. Chem. Int. Ed. 1998, 37, 138.  doi: 10.1002/(ISSN)1521-3773

    90. [90]

      Pozsgay, V.; Chu, C.; Pannell, L.; Wolfe, J.; Robbins, J. B.; Schneerson, R. PNAS 1999, 96, 5194.  doi: 10.1073/pnas.96.9.5194

    91. [91]

      Pozsgay, V. Tetrahedron:Asymmetry 2000, 11, 151.  doi: 10.1016/S0957-4166(99)00553-4

    92. [92]

      Joe, M.; Bai, Y.; Nacario, R. C.; Lowary, T. L. J. Am. Chem. Soc. 2007, 129, 9885.  doi: 10.1021/ja072892+

    93. [93]

      Ishiwata, A.; Ito, Y. J. Am. Chem. Soc. 2011, 133, 2275.  doi: 10.1021/ja109932t

    94. [94]

      Thadke, S. A.; Mishra, B.; Islam, M.; Pasari, S.; Manmode, S.; Rao, B. V.; Hotha, S. Nat. Commun. 2017, 8, 14019.  doi: 10.1038/ncomms14019

    95. [95]

      Pasari, S.; Manmode, S.; Walke, G.; Hotha, S. Chem. Eur. J. 2018, 24, 1128.  doi: 10.1002/chem.201704009

    96. [96]

      Mishra, B.; Neralkar, M.; Hotha, S. Angew. Chem. Int. Ed. 2016, 55, 7786.  doi: 10.1002/anie.201511695

    97. [97]

      Fraser-Reid, B.; Lu, J.; Jayaprakash, K. N.; Lopez, J. C. Tetrahedron:Asymmetry 2006, 17, 2449.  doi: 10.1016/j.tetasy.2006.09.008

    98. [98]

      Islam, M.; Shinde, G. P.; Hotha, S. Chem. Sci. 2017, 8, 2033.  doi: 10.1039/C6SC04866H

    99. [99]

      Calin, O.; Eller, S.; Seeberger, P. H. Angew. Chem. Int. Ed. 2013, 52, 5862.  doi: 10.1002/anie.201210176

    100. [100]

      Naresh, K.; Schumacher, F.; Hahm, H. S.; Seeberger, P. H. Chem. Commun. 2017, 53, 9085.  doi: 10.1039/C7CC04380E

    101. [101]

      Yu, Y.; Kononov, A.; Delbianco, M.; Seeberger, P. H. Chem. Eur. J. 2018, 24, 6075.  doi: 10.1002/chem.v24.23

  • 加载中
    1. [1]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    2. [2]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    3. [3]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    4. [4]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    5. [5]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    6. [6]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    7. [7]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    8. [8]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    9. [9]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    10. [10]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    11. [11]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    12. [12]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    13. [13]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    14. [14]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    15. [15]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    16. [16]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    17. [17]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    18. [18]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    19. [19]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    20. [20]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

Metrics
  • PDF Downloads(184)
  • Abstract views(5142)
  • HTML views(2064)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return