Citation: Yang Wei-Yu, Lei Zhi-Chao, Hong Wenjing, Huang Fei-Zhou. Advances in Charge Transport through DNA Molecular Junction by Employing Electrodes Pair with Nanometer-sized Separation[J]. Acta Chimica Sinica, ;2019, 77(10): 951-963. doi: 10.6023/A19040127 shu

Advances in Charge Transport through DNA Molecular Junction by Employing Electrodes Pair with Nanometer-sized Separation

  • Corresponding author: Hong Wenjing, whong@xmu.edu.cn Huang Fei-Zhou, huangfeizhou@csu.edu.cn
  • Received Date: 11 April 2019
    Available Online: 20 October 2019

    Fund Project: the National Natural Science Foundation of China 21722305the National Key R&D Program of China 2017YFA0204902the New Xiangya Talent Project of the Third Xiangya Hospital of Central South University 20150203Project supported by the New Xiangya Talent Project of the Third Xiangya Hospital of Central South University (No. 20150203), the National Key R&D Program of China (No. 2017YFA0204902), and the National Natural Science Foundation of China (No. 21722305)

Figures(19)

  • Molecular electronics is an interdisciplinary science that mainly studies the charge transport through molecules and its main goal is to fabricate molecular devices with electrical functionalities. In the state-of-art of molecular electronics, the research paradigm is to fabricate electrodes pair with nanometer-sized separation and construct the molecular junction through the assembly of target molecules with the electrodes pair. With this framework, the target molecule can be integrated to the macroscopic measurement circuit. DNA is one of the most significant biomolecules in natural sciences. It had drawn great attentions in biomedicine because of the carried genetic instructions. In molecular electronics, DNA also had attracted much interest due to the distinct structure and its capability of long-range charge transport. Nevertheless, in the early stage of molecular electronics, the probe molecules were limited to those with simple structures and short lengths. In recent years, molecular electronics had witnessed a rapid progress due to the developments in micro/nano-fabrication and the detection for weak current signal. Specifically, it includes the improvements in the success rate, efficiency, and stability of the fabricated molecular device. Benefiting from that, the probe molecules had been extended to a number of complex compounds like DNA. We give a brief introduction to the recent progress in the fabrication of DNA molecular junctions and the studies on the corresponding charge transport, most of which were made by using the research paradigm of fabricating electrodes pair with nanometer-sized separation. According to the fabrication methods that employed, these advances were introduced in two classes. One is that made by the as-called break junction methods, which include STM-break junction, conductive AFM and mechanically controllable break junction. The other is that made by the as-called cutting methods, which include cutting of carbon nanotube, graphene and silicon nanowire. We summarize the historical development of these methods and give a comparison between them. We also introduce some representative research on the charge transport through DNA molecular junction, and discuss the distinct features of DNA in electrical properties compared to the conventional small molecules. To conclude, we give a prospect on the future development of the studies on charge transport through DNA molecular junction.
  • 加载中
    1. [1]

      Franklin, R. E.; Gosling, R. G. Nature 1953, 171, 740.  doi: 10.1038/171740a0

    2. [2]

      Watson, J. D.; Crick, F. H. C. Nature 1953, 171, 737.  doi: 10.1038/171737a0

    3. [3]

      Wilkins, M. H. F.; Stokes, A. R.; Wilson, H. R. Nature 1953, 171, 738.  doi: 10.1038/171738a0

    4. [4]

      Feynman, R. P. In Engineering and Science, Vol. 23, The Caltech Alumni Magazine, 1960.

    5. [5]

      Asanuma, H.; Liang, X.; Nishioka, H.; Matsunaga, D.; Liu, M.; Komiyama, M. Nat. Protoc. 2007, 2, 203.  doi: 10.1038/nprot.2006.465

    6. [6]

      Zhou, C.; Yang, Z.; Liu, D. J. Am. Chem. Soc. 2012, 134, 1416.  doi: 10.1021/ja209590u

    7. [7]

      Robinson, B. H.; Seeman, N. C. Protein Eng. Des. Sel. 1987, 1, 295.  doi: 10.1093/protein/1.4.295

    8. [8]

      Adleman, L. Science 1994, 266, 1021.  doi: 10.1126/science.7973651

    9. [9]

      Alivisatos, A. P.; Johnsson, K. P.; Peng, X.; Wilson, T. E.; Loweth, C. J.; Bruchez Jr., M. P.; Schultz, P. G. Nature 1996, 382, 609.  doi: 10.1038/382609a0

    10. [10]

      Meggers, E.; Kusch, D.; Spichty, M.; Wille, U.; Giese, B. Angew. Chem., Int. Ed. 1998, 37, 460.  doi: 10.1002/(SICI)1521-3773(19980302)37:4<460::AID-ANIE460>3.0.CO;2-U

    11. [11]

      Sun, Y.; Cheng, P.; Yan, S.; Liao, D. Chin. Sci. Bull. 2000, 45, 2357 (in Chinese).  doi: 10.3321/j.issn:0023-074X.2000.22.002

    12. [12]

      Cees, D.; Mark, R. Phys. World 2001, 14, 29.

    13. [13]

      Xu, X.; Han, B.; Yu, X.; Zhu, Y. Acta Chim. Sinica DOI:10.6023/A19010019 (in chinese).  doi: 10.6023/A19010019

    14. [14]

      Yang, Y.; Liu, J. Y.; Yan, R. W.; Wu, D. Y.; Tian, Z. Q. Chem. J. Chin. Univ.-Chin. 2015, 36, 9 (in Chinese).

    15. [15]

      Xiang, D.; Wang, X.; Jia, C.; Lee, T.; Guo, X. Chem. Rev. 2016, 116, 4318.  doi: 10.1021/acs.chemrev.5b00680

    16. [16]

      Li, T.; Hu, W.; Zhu, D. Adv. Mater. 2010, 22, 286.  doi: 10.1002/adma.200900864

    17. [17]

      Kushmerick, J. G.; Holt, D. B.; Pollack, S. K.; Ratner, M. A.; Yang, J. C.; Schull, T. L.; Naciri, J.; Moore, M. H.; Shashidhar, R. J. Am. Chem. Soc. 2002, 124, 10654.  doi: 10.1021/ja027090n

    18. [18]

      Kushmerick, J. G.; Holt, D. B.; Yang, J. C.; Naciri, J.; Moore, M. H.; Shashidhar, R. Phys. Rev. Lett. 2002, 89, 086802.  doi: 10.1103/PhysRevLett.89.086802

    19. [19]

      Nijhuis, C. A.; Reus, W. F.; Whitesides, G. M. J. Am. Chem. Soc. 2010, 132, 18386.  doi: 10.1021/ja108311j

    20. [20]

      Zhang, W.; Liu, H.; Lu, J.; Ni, L.; Liu, H.; Li, Q.; Qiu, M.; Xu, B.; Lee, T.; Zhao, Z.; Wang, X.; Wang, M.; Wang, T.; Offenhäusser, A.; Mayer, D.; Hwang, W.-T.; Xiang, D. Light-Sci. Appl. 2019, 8, 34.  doi: 10.1038/s41377-019-0144-z

    21. [21]

      Reed, M. A.; Zhou, C.; Muller, C. J.; Burgin, T. P.; Tour, J. M. Science 1997, 278, 252.  doi: 10.1126/science.278.5336.252

    22. [22]

      Xu, B. Q.; Tao, N. J. J. Science 2003, 301, 1221.

    23. [23]

      Haiss, W.; Wang, C. S.; Grace, I.; Batsanov, A. S.; Schiffrin, D. J.; Higgins, S. J.; Bryce, M. R.; Lambert, C. J.; Nichols, R. J. Nat. Mater. 2006, 5, 995.  doi: 10.1038/nmat1781

    24. [24]

      Yu, P.; Feng, A.; Zhao, S.; Wei, J.; Yang, Y.; Shi, J.; Hong, W. Acta Phys.-Chim. Sin. 2019, 35, 829 (in Chinese).  doi: 10.3866/PKU.WHXB201811027

    25. [25]

      Park, H.; Lim, A. K. L.; Alivisatos, A. P.; Park, J.; McEuen, P. L. Appl. Phys. Lett. 1999, 75, 301.  doi: 10.1063/1.124354

    26. [26]

      Song, H.; Kim, Y.; Jang, Y. H.; Jeong, H.; Reed, M. A.; Lee, T. Nature 2009, 462, 1039.  doi: 10.1038/nature08639

    27. [27]

      Li, C. Z.; Tao, N. J. Appl. Phys. Lett. 1998, 72, 894.  doi: 10.1063/1.120928

    28. [28]

      Qing, Q.; Chen, F.; Li, P. G.; Tang, W. H.; Wu, Z. Y.; Liu, Z. F. Angew. Chem., Int. Ed. 2005, 44, 7771.  doi: 10.1002/anie.200502680

    29. [29]

      Yang, Y.; Liu, J.-Y.; Chen, Z.-B.; Tian, J.-H.; Jin, X.; Liu, B.; Li, X.; Luo, Z.-Z.; Lu, M.; Yang, F.-Z.; Tao, N.; Tian, Z.-Q. Nanotechnology 2011, 22, 275313.  doi: 10.1088/0957-4484/22/27/275313

    30. [30]

      Sorgenfrei, S.; Chiu, C.-y.; Gonzalez Jr., R. L.; Yu, Y.-J.; Kim, P.; Nuckolls, C.; Shepard, K. L. Nat. Nanotechnol. 2011, 6, 126.  doi: 10.1038/nnano.2010.275

    31. [31]

      Goldsmith, B. R.; Coroneus, J. G.; Khalap, V. R.; Kane, A. A.; Weiss, G. A.; Collins, P. G. Science 2007, 315, 77.  doi: 10.1126/science.1135303

    32. [32]

      Duan, H.; Manfrinato, V. R.; Yang, J. K. W.; Winston, D.; Cord, B. M.; Berggren, K. K. J. Vac. Sci. Technol., B: Microelectron. Nano- meter Struct. 2010, 28, C6H11.

    33. [33]

      Nedelcu, M.; Saifullah, M. S. M.; Hasko, D. G.; Jang, A.; Anderson, D.; Huck, W. T. S.; Jones, G. A. C.; Welland, M. E.; Kang, D. J.; Steiner, U. Adv. Funct. Mater. 2010, 20, 2317.  doi: 10.1002/adfm.201000219

    34. [34]

      Qin, L.; Park, S.; Huang, L.; Mirkin, C. A. Science 2005, 309, 113.  doi: 10.1126/science.1112666

    35. [35]

      Chen, X.; Braunschweig, A. B.; Wiester, M. J.; Yeganeh, S.; Ratner, M. A.; Mirkin, C. A. Angew. Chem., Int. Ed. 2009, 48, 5178.  doi: 10.1002/anie.200806028

    36. [36]

      Guo, X. F.; Small, J. P.; Klare, J. E.; Wang, Y. L.; Purewal, M. S.; Tam, I. W.; Hong, B. H.; Caldwell, R.; Huang, L. M.; O'Brien, S.; Yan, J. M.; Breslow, R.; Wind, S. J.; Hone, J.; Kim, P.; Nuckolls, C. Science 2006, 311, 356.  doi: 10.1126/science.1120986

    37. [37]

      Cao, Y.; Dong, S. H.; Liu, S.; He, L.; Gan, L.; Yu, X. M.; Steigerwald, M. L.; Wu, X. S.; Liu, Z. F.; Guo, X. F. Angew. Chem., Int. Ed. 2012, 51, 12228.  doi: 10.1002/anie.201205607

    38. [38]

      Huang, B.; Liu, X.; Yuan, Y.; Hong, Z.-W.; Zheng, J.-F.; Pei, L.-Q.; Shao, Y.; Li, J.-F.; Zhou, X.-S.; Chen, J.-Z.; Jin, S.; Mao, B.-W. J. Am. Chem. Soc. 2018, 140, 17685.  doi: 10.1021/jacs.8b10450

    39. [39]

      Wang, L.; Gong, Z.-L.; Li, S.-Y.; Hong, W.; Zhong, Y.-W.; Wang, D.; Wan, L.-J. Angew. Chem., Int. Ed. 2016, 55, 12393.  doi: 10.1002/anie.201605622

    40. [40]

      Cui, X. D.; Primak, A.; Zarate, X.; Tomfohr, J.; Sankey, O. F.; Moore, A. L.; Moore, T. A.; Gust, D.; Harris, G.; Lindsay, S. M. Science 2001, 294, 571.  doi: 10.1126/science.1064354

    41. [41]

      Huang, Z. F.; Xu, B. Q.; Chen, Y. C.; Di Ventra, M.; Tao, N. J. Nano Lett. 2006, 6, 1240.  doi: 10.1021/nl0608285

    42. [42]

      Guo, C.; Chen, X.; Ding, S.-Y.; Mayer, D.; Wang, Q.; Zhao, Z.; Ni, L.; Liu, H.; Lee, T.; Xu, B.; Xiang, D. ACS Nano 2018, 12, 11229.  doi: 10.1021/acsnano.8b05826

    43. [43]

      Wen, H.-M.; Yang, Y.; Zhou, X.-S.; Liu, J.-Y.; Zhang, D.-B.; Chen, Z.-B.; Wang, J.-Y.; Chen, Z.-N.; Tian, Z.-Q. Chem. Sci. 2013, 4, 2471.  doi: 10.1039/c3sc50312g

    44. [44]

      Liu, J.; Zhao, X.; Zheng, J.; Huang, X.; Tang, Y.; Wang, F.; Li, R.; Pi, J.; Huang, C.; Wang, L.; Yang, Y.; Shi, J.; Mao, B.-W.; Tian, Z.-Q.; Bryce, M. R.; Hong, W. Chem 2019, 5, 390.  doi: 10.1016/j.chempr.2018.11.002

    45. [45]

      Cai, S.; Deng, W.; Huang, F.; Chen, L.; Tang, C.; He, W.; Long, S.; Li, R.; Tan, Z.; Liu, J.; Shi, J.; Liu, Z.; Xiao, Z.; Zhang, D.; Hong, W. Angew. Chem., Int. Ed. 2019, 58, 3829.  doi: 10.1002/anie.201813137

    46. [46]

      Zhang, Y.-P.; Chen, L.-C.; Zhang, Z.-Q.; Cao, J.-J.; Tang, C.; Liu, J.; Duan, L.-L.; Huo, Y.; Shao, X.; Hong, W.; Zhang, H.-L. J. Am. Chem. Soc. 2018, 140, 6531.  doi: 10.1021/jacs.8b02825

    47. [47]

      Chen, L.; Wang, Y. H.; He, B.; Nie, H.; Hu, R.; Huang, F.; Qin, A.; Zhou, X. S.; Zhao, Z.; Tang, B. Z. Angew. Chem., Int. Ed. 2015, 54, 4231.  doi: 10.1002/anie.201411909

    48. [48]

      Venkataraman, L.; Klare, J. E.; Nuckolls, C.; Hybertsen, M. S.; Steigerwald, M. L. Nature 2006, 442, 904.  doi: 10.1038/nature05037

    49. [49]

      Liu, L.; Zhang, Q.; Tao, S.; Zhao, C.; Almutib, E.; Al-Galiby, Q.; Bailey, S. W. D.; Grace, I.; Lambert, C. J.; Du, J.; Yang, L. Nanoscale 2016, 8, 14507.  doi: 10.1039/C6NR03807G

    50. [50]

      Hihath, J.; Xu, B. Q.; Zhang, P. M.; Tao, N. J. PNAS 2005, 102, 16979.  doi: 10.1073/pnas.0505175102

    51. [51]

      Bruot, C.; Palma, J. L.; Xiang, L. M.; Mujica, V.; Ratner, M. A.; Tao, N. J. Nat. Commun. 2015, 6, 8032.  doi: 10.1038/ncomms9032

    52. [52]

      Harashima, T.; Kojima, C.; Fujii, S.; Kiguchi, M.; Nishino, T. Chem. Commun. 2017, 53, 10378.  doi: 10.1039/C7CC02911J

    53. [53]

      Xiang, L. M.; Palma, J. L.; Li, Y. Q.; Mujica, V.; Ratner, M. A.; Tao, N. J. Nat. Commun. 2017, 8, 14471.  doi: 10.1038/ncomms14471

    54. [54]

      Reddy, P.; Jang, S.-Y.; Segalman, R. A.; Majumdar, A. Science 2007, 315, 1568.  doi: 10.1126/science.1137149

    55. [55]

      Paulsson, M.; Datta, S. Phys. Rev. B 2003, 67, 241403.  doi: 10.1103/PhysRevB.67.241403

    56. [56]

      Guo, S.; Zhou, G.; Tao, N. Nano Lett. 2013, 13, 4326.  doi: 10.1021/nl4021073

    57. [57]

      Widawsky, J. R.; Chen, W.; Vazquez, H.; Kim, T.; Breslow, R.; Hybertsen, M. S.; Venkataraman, L. Nano Lett. 2013, 13, 2889.  doi: 10.1021/nl4012276

    58. [58]

      Kim, Y.; Jeong, W.; Kim, K.; Lee, W.; Reddy, P. Nat. Nanotechnol. 2014, 9, 881.  doi: 10.1038/nnano.2014.209

    59. [59]

      Garner, M. H.; Li, H.; Chen, Y.; Su, T. A.; Shangguan, Z.; Paley, D. W.; Liu, T.; Ng, F.; Li, H.; Xiao, S.; Nuckolls, C.; Venkataraman, L.; Solomon, G. C. Nature 2018, 558, 415.  doi: 10.1038/s41586-018-0197-9

    60. [60]

      Miao, R.; Xu, H.; Skripnik, M.; Cui, L.; Wang, K.; Pedersen, K. G. L.; Leijnse, M.; Pauly, F.; Wärnmark, K.; Meyhofer, E.; Reddy, P.; Linke, H. Nano Lett. 2018, 18, 5666.  doi: 10.1021/acs.nanolett.8b02207

    61. [61]

      Li, Y. Q.; Xiang, L. M.; Palma, J. L.; Asai, Y.; Tao, N. J. Nat. Commun. 2016, 7, 11294.  doi: 10.1038/ncomms11294

    62. [62]

      Cygan, M. T.; Dunbar, T. D.; Arnold, J. J.; Bumm, L. A.; Shedlock, N. F.; Burgin, T. P.; Jones, L.; Allara, D. L.; Tour, J. M.; Weiss, P. S. J. Am. Chem. Soc. 1998, 120, 2721.  doi: 10.1021/ja973448h

    63. [63]

      Nogues, C.; Cohen, S. R.; Daube, S. S.; Naaman, R. Phys. Chem. Chem. Phys. 2004, 6, 4459.  doi: 10.1039/b410862k

    64. [64]

      Cohen, H.; Nogues, C.; Naaman, R.; Porath, D. PNAS 2005, 102, 11589.  doi: 10.1073/pnas.0505272102

    65. [65]

      Cohen, H.; Nogues, C.; Ullien, D.; Daube, S.; Naaman, R.; Porath, D. Faraday Discuss. 2006, 131, 367.  doi: 10.1039/B507706K

    66. [66]

      Ullien, D.; Cohen, H.; Porath, D. Nanotechnology 2007, 18, 4.

    67. [67]

      Livshits, G. I.; Stern, A.; Rotem, D.; Borovok, N.; Eidelshtein, G.; Migliore, A.; Penzo, E.; Wind, S. J.; Felice, R. D.; Skourtis, S. S. Nat. Nanotechnol. 2014, 9, 1040.  doi: 10.1038/nnano.2014.246

    68. [68]

      Muller, C. J.; van Ruitenbeek, J. M.; de Jongh, L. J. Physica C 1992, 191, 485.  doi: 10.1016/0921-4534(92)90947-B

    69. [69]

      van Ruitenbeek, J. M.; Alvarez, A.; Piñeyro, I.; Grahmann, C.; Joyez, P.; Devoret, M. H.; Esteve, D.; Urbina, C. Rev. Sci. Instrum. 1996, 67, 108.  doi: 10.1063/1.1146558

    70. [70]

      Muller, C. J.; de Bruyn Ouboter, R. J. Appl. Phys. 1995, 77, 5231.  doi: 10.1063/1.359273

    71. [71]

      Zhou, C.; Muller, C. J.; Deshpande, M. R.; Sleight, J. W.; Reed, M. A. Appl. Phys. Lett. 1995, 67, 1160.  doi: 10.1063/1.114994

    72. [72]

      Martin, C. A.; Ding, D.; van der Zant, H. S. J.; van Ruitenbeek, J. M. New J. Phys. 2008, 10, 065008.  doi: 10.1088/1367-2630/10/6/065008

    73. [73]

      Kang, N.; Erbe, A.; Scheer, E. New J. Phys. 2008, 10, 9.

    74. [74]

      Dulic, D.; Tuukkanen, S.; Chung, C.-L.; Isambert, A.; Lavie, P.; Filoramo, A. Nanotechnology 2009, 20, 115502.  doi: 10.1088/0957-4484/20/11/115502

    75. [75]

      Chen, J.; Reed, M. A.; Rawlett, A. M.; Tour, J. M. Science 1999, 286, 1550.  doi: 10.1126/science.286.5444.1550

    76. [76]

      Wassel, R. A.; Credo, G. M.; Fuierer, R. R.; Feldheim, D. L.; Gorman, C. B. J. Am. Chem. Soc. 2004, 126, 295.  doi: 10.1021/ja037651q

    77. [77]

      Perrin, M. L.; Frisenda, R.; Koole, M.; Seldenthuis, J. S.; Gil, J. A. C.; Valkenier, H.; Hummelen, J. C.; Renaud, N.; Grozema, F. C.; Thijssen, J. M.; Dulić, D.; van der Zant, H. S. J. Nat. Nanotechnol. 2014, 9, 830.  doi: 10.1038/nnano.2014.177

    78. [78]

      Zhu, S. C.; Peng, S. J.; Wu, K. M.; Yip, C. T.; Yao, K. L.; Lam, C. H. Phys. Chem. Chem. Phys. 2018, 20, 21105.  doi: 10.1039/C8CP02935K

    79. [79]

      Walzer, K.; Marx, E.; Greenham, N. C.; Less, R. J.; Raithby, P. R.; Stokbro, K. J. Am. Chem. Soc. 2004, 126, 1229.  doi: 10.1021/ja036771v

    80. [80]

      Kang, N.; Erbe, A.; Scheer, E. Appl. Phys. Lett. 2010, 96, 023701.  doi: 10.1063/1.3291113

    81. [81]

      Liu, S. P.; Weisbrod, S. H.; Tang, Z.; Marx, A.; Scheer, E.; Erbe, A. Angew. Chem., Int. Ed. 2010, 49, 3313.  doi: 10.1002/anie.201000022

    82. [82]

      Guo, X. F.; Gorodetsky, A. A.; Hone, J.; Barton, J. K.; Nuckolls, C. Nat. Nanotechnol. 2008, 3, 163.  doi: 10.1038/nnano.2008.4

    83. [83]

      Roy, S.; Vedala, H.; Roy, A. D.; Kim, D.-h.; Doud, M.; Mathee, K.; Shin, H.-k.; Shimamoto, N.; Prasad, V.; Choi, W. Nano Lett. 2008, 8, 26.  doi: 10.1021/nl0716451

    84. [84]

      Wang, X. L.; Gao, L.; Liang, B.; Li, X.; Guo, X. F. J. Mat. Chem. B 2015, 3, 5150.  doi: 10.1039/C5TB00666J

    85. [85]

      Wang, J. D.; Shen, F. X.; Wang, Z. X.; He, G.; Qin, J. W.; Cheng, N. Y.; Yao, M. S.; Li, L. D.; Guo, X. F. Angew. Chem., Int. Ed. 2014, 53, 5038.

    86. [86]

      He, G.; Li, J.; Ci, H. N.; Qi, C. M.; Guo, X. F. Angew. Chem., Int. Ed. 2016, 55, 9036.  doi: 10.1002/anie.201603038

  • 加载中
    1. [1]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    2. [2]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    3. [3]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    4. [4]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    5. [5]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    6. [6]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    7. [7]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    8. [8]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    9. [9]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    10. [10]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    11. [11]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    12. [12]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    13. [13]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    14. [14]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    15. [15]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    16. [16]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    17. [17]

      Jinghan Xu Yang Wang Donghui Wei . Drawing Cross-Sectional Contour Maps of π Molecular Orbitals. University Chemistry, 2025, 40(3): 23-29. doi: 10.12461/PKU.DXHX202403023

    18. [18]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    19. [19]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    20. [20]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

Metrics
  • PDF Downloads(38)
  • Abstract views(2004)
  • HTML views(316)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return