Advances in Charge Transport through DNA Molecular Junction by Employing Electrodes Pair with Nanometer-sized Separation
- Corresponding author: Hong Wenjing, whong@xmu.edu.cn Huang Fei-Zhou, huangfeizhou@csu.edu.cn
Citation: Yang Wei-Yu, Lei Zhi-Chao, Hong Wenjing, Huang Fei-Zhou. Advances in Charge Transport through DNA Molecular Junction by Employing Electrodes Pair with Nanometer-sized Separation[J]. Acta Chimica Sinica, ;2019, 77(10): 951-963. doi: 10.6023/A19040127
Franklin, R. E.; Gosling, R. G. Nature 1953, 171, 740.
doi: 10.1038/171740a0
Watson, J. D.; Crick, F. H. C. Nature 1953, 171, 737.
doi: 10.1038/171737a0
Wilkins, M. H. F.; Stokes, A. R.; Wilson, H. R. Nature 1953, 171, 738.
doi: 10.1038/171738a0
Feynman, R. P. In Engineering and Science, Vol. 23, The Caltech Alumni Magazine, 1960.
Asanuma, H.; Liang, X.; Nishioka, H.; Matsunaga, D.; Liu, M.; Komiyama, M. Nat. Protoc. 2007, 2, 203.
doi: 10.1038/nprot.2006.465
Zhou, C.; Yang, Z.; Liu, D. J. Am. Chem. Soc. 2012, 134, 1416.
doi: 10.1021/ja209590u
Robinson, B. H.; Seeman, N. C. Protein Eng. Des. Sel. 1987, 1, 295.
doi: 10.1093/protein/1.4.295
Adleman, L. Science 1994, 266, 1021.
doi: 10.1126/science.7973651
Alivisatos, A. P.; Johnsson, K. P.; Peng, X.; Wilson, T. E.; Loweth, C. J.; Bruchez Jr., M. P.; Schultz, P. G. Nature 1996, 382, 609.
doi: 10.1038/382609a0
Meggers, E.; Kusch, D.; Spichty, M.; Wille, U.; Giese, B. Angew. Chem., Int. Ed. 1998, 37, 460.
doi: 10.1002/(SICI)1521-3773(19980302)37:4<460::AID-ANIE460>3.0.CO;2-U
Sun, Y.; Cheng, P.; Yan, S.; Liao, D. Chin. Sci. Bull. 2000, 45, 2357 (in Chinese).
doi: 10.3321/j.issn:0023-074X.2000.22.002
Cees, D.; Mark, R. Phys. World 2001, 14, 29.
Xu, X.; Han, B.; Yu, X.; Zhu, Y. Acta Chim. Sinica DOI:10.6023/A19010019 (in chinese).
doi: 10.6023/A19010019
Yang, Y.; Liu, J. Y.; Yan, R. W.; Wu, D. Y.; Tian, Z. Q. Chem. J. Chin. Univ.-Chin. 2015, 36, 9 (in Chinese).
Xiang, D.; Wang, X.; Jia, C.; Lee, T.; Guo, X. Chem. Rev. 2016, 116, 4318.
doi: 10.1021/acs.chemrev.5b00680
Li, T.; Hu, W.; Zhu, D. Adv. Mater. 2010, 22, 286.
doi: 10.1002/adma.200900864
Kushmerick, J. G.; Holt, D. B.; Pollack, S. K.; Ratner, M. A.; Yang, J. C.; Schull, T. L.; Naciri, J.; Moore, M. H.; Shashidhar, R. J. Am. Chem. Soc. 2002, 124, 10654.
doi: 10.1021/ja027090n
Kushmerick, J. G.; Holt, D. B.; Yang, J. C.; Naciri, J.; Moore, M. H.; Shashidhar, R. Phys. Rev. Lett. 2002, 89, 086802.
doi: 10.1103/PhysRevLett.89.086802
Nijhuis, C. A.; Reus, W. F.; Whitesides, G. M. J. Am. Chem. Soc. 2010, 132, 18386.
doi: 10.1021/ja108311j
Zhang, W.; Liu, H.; Lu, J.; Ni, L.; Liu, H.; Li, Q.; Qiu, M.; Xu, B.; Lee, T.; Zhao, Z.; Wang, X.; Wang, M.; Wang, T.; Offenhäusser, A.; Mayer, D.; Hwang, W.-T.; Xiang, D. Light-Sci. Appl. 2019, 8, 34.
doi: 10.1038/s41377-019-0144-z
Reed, M. A.; Zhou, C.; Muller, C. J.; Burgin, T. P.; Tour, J. M. Science 1997, 278, 252.
doi: 10.1126/science.278.5336.252
Xu, B. Q.; Tao, N. J. J. Science 2003, 301, 1221.
Haiss, W.; Wang, C. S.; Grace, I.; Batsanov, A. S.; Schiffrin, D. J.; Higgins, S. J.; Bryce, M. R.; Lambert, C. J.; Nichols, R. J. Nat. Mater. 2006, 5, 995.
doi: 10.1038/nmat1781
Yu, P.; Feng, A.; Zhao, S.; Wei, J.; Yang, Y.; Shi, J.; Hong, W. Acta Phys.-Chim. Sin. 2019, 35, 829 (in Chinese).
doi: 10.3866/PKU.WHXB201811027
Park, H.; Lim, A. K. L.; Alivisatos, A. P.; Park, J.; McEuen, P. L. Appl. Phys. Lett. 1999, 75, 301.
doi: 10.1063/1.124354
Song, H.; Kim, Y.; Jang, Y. H.; Jeong, H.; Reed, M. A.; Lee, T. Nature 2009, 462, 1039.
doi: 10.1038/nature08639
Li, C. Z.; Tao, N. J. Appl. Phys. Lett. 1998, 72, 894.
doi: 10.1063/1.120928
Qing, Q.; Chen, F.; Li, P. G.; Tang, W. H.; Wu, Z. Y.; Liu, Z. F. Angew. Chem., Int. Ed. 2005, 44, 7771.
doi: 10.1002/anie.200502680
Yang, Y.; Liu, J.-Y.; Chen, Z.-B.; Tian, J.-H.; Jin, X.; Liu, B.; Li, X.; Luo, Z.-Z.; Lu, M.; Yang, F.-Z.; Tao, N.; Tian, Z.-Q. Nanotechnology 2011, 22, 275313.
doi: 10.1088/0957-4484/22/27/275313
Sorgenfrei, S.; Chiu, C.-y.; Gonzalez Jr., R. L.; Yu, Y.-J.; Kim, P.; Nuckolls, C.; Shepard, K. L. Nat. Nanotechnol. 2011, 6, 126.
doi: 10.1038/nnano.2010.275
Goldsmith, B. R.; Coroneus, J. G.; Khalap, V. R.; Kane, A. A.; Weiss, G. A.; Collins, P. G. Science 2007, 315, 77.
doi: 10.1126/science.1135303
Duan, H.; Manfrinato, V. R.; Yang, J. K. W.; Winston, D.; Cord, B. M.; Berggren, K. K. J. Vac. Sci. Technol., B: Microelectron. Nano- meter Struct. 2010, 28, C6H11.
Nedelcu, M.; Saifullah, M. S. M.; Hasko, D. G.; Jang, A.; Anderson, D.; Huck, W. T. S.; Jones, G. A. C.; Welland, M. E.; Kang, D. J.; Steiner, U. Adv. Funct. Mater. 2010, 20, 2317.
doi: 10.1002/adfm.201000219
Qin, L.; Park, S.; Huang, L.; Mirkin, C. A. Science 2005, 309, 113.
doi: 10.1126/science.1112666
Chen, X.; Braunschweig, A. B.; Wiester, M. J.; Yeganeh, S.; Ratner, M. A.; Mirkin, C. A. Angew. Chem., Int. Ed. 2009, 48, 5178.
doi: 10.1002/anie.200806028
Guo, X. F.; Small, J. P.; Klare, J. E.; Wang, Y. L.; Purewal, M. S.; Tam, I. W.; Hong, B. H.; Caldwell, R.; Huang, L. M.; O'Brien, S.; Yan, J. M.; Breslow, R.; Wind, S. J.; Hone, J.; Kim, P.; Nuckolls, C. Science 2006, 311, 356.
doi: 10.1126/science.1120986
Cao, Y.; Dong, S. H.; Liu, S.; He, L.; Gan, L.; Yu, X. M.; Steigerwald, M. L.; Wu, X. S.; Liu, Z. F.; Guo, X. F. Angew. Chem., Int. Ed. 2012, 51, 12228.
doi: 10.1002/anie.201205607
Huang, B.; Liu, X.; Yuan, Y.; Hong, Z.-W.; Zheng, J.-F.; Pei, L.-Q.; Shao, Y.; Li, J.-F.; Zhou, X.-S.; Chen, J.-Z.; Jin, S.; Mao, B.-W. J. Am. Chem. Soc. 2018, 140, 17685.
doi: 10.1021/jacs.8b10450
Wang, L.; Gong, Z.-L.; Li, S.-Y.; Hong, W.; Zhong, Y.-W.; Wang, D.; Wan, L.-J. Angew. Chem., Int. Ed. 2016, 55, 12393.
doi: 10.1002/anie.201605622
Cui, X. D.; Primak, A.; Zarate, X.; Tomfohr, J.; Sankey, O. F.; Moore, A. L.; Moore, T. A.; Gust, D.; Harris, G.; Lindsay, S. M. Science 2001, 294, 571.
doi: 10.1126/science.1064354
Huang, Z. F.; Xu, B. Q.; Chen, Y. C.; Di Ventra, M.; Tao, N. J. Nano Lett. 2006, 6, 1240.
doi: 10.1021/nl0608285
Guo, C.; Chen, X.; Ding, S.-Y.; Mayer, D.; Wang, Q.; Zhao, Z.; Ni, L.; Liu, H.; Lee, T.; Xu, B.; Xiang, D. ACS Nano 2018, 12, 11229.
doi: 10.1021/acsnano.8b05826
Wen, H.-M.; Yang, Y.; Zhou, X.-S.; Liu, J.-Y.; Zhang, D.-B.; Chen, Z.-B.; Wang, J.-Y.; Chen, Z.-N.; Tian, Z.-Q. Chem. Sci. 2013, 4, 2471.
doi: 10.1039/c3sc50312g
Liu, J.; Zhao, X.; Zheng, J.; Huang, X.; Tang, Y.; Wang, F.; Li, R.; Pi, J.; Huang, C.; Wang, L.; Yang, Y.; Shi, J.; Mao, B.-W.; Tian, Z.-Q.; Bryce, M. R.; Hong, W. Chem 2019, 5, 390.
doi: 10.1016/j.chempr.2018.11.002
Cai, S.; Deng, W.; Huang, F.; Chen, L.; Tang, C.; He, W.; Long, S.; Li, R.; Tan, Z.; Liu, J.; Shi, J.; Liu, Z.; Xiao, Z.; Zhang, D.; Hong, W. Angew. Chem., Int. Ed. 2019, 58, 3829.
doi: 10.1002/anie.201813137
Zhang, Y.-P.; Chen, L.-C.; Zhang, Z.-Q.; Cao, J.-J.; Tang, C.; Liu, J.; Duan, L.-L.; Huo, Y.; Shao, X.; Hong, W.; Zhang, H.-L. J. Am. Chem. Soc. 2018, 140, 6531.
doi: 10.1021/jacs.8b02825
Chen, L.; Wang, Y. H.; He, B.; Nie, H.; Hu, R.; Huang, F.; Qin, A.; Zhou, X. S.; Zhao, Z.; Tang, B. Z. Angew. Chem., Int. Ed. 2015, 54, 4231.
doi: 10.1002/anie.201411909
Venkataraman, L.; Klare, J. E.; Nuckolls, C.; Hybertsen, M. S.; Steigerwald, M. L. Nature 2006, 442, 904.
doi: 10.1038/nature05037
Liu, L.; Zhang, Q.; Tao, S.; Zhao, C.; Almutib, E.; Al-Galiby, Q.; Bailey, S. W. D.; Grace, I.; Lambert, C. J.; Du, J.; Yang, L. Nanoscale 2016, 8, 14507.
doi: 10.1039/C6NR03807G
Hihath, J.; Xu, B. Q.; Zhang, P. M.; Tao, N. J. PNAS 2005, 102, 16979.
doi: 10.1073/pnas.0505175102
Bruot, C.; Palma, J. L.; Xiang, L. M.; Mujica, V.; Ratner, M. A.; Tao, N. J. Nat. Commun. 2015, 6, 8032.
doi: 10.1038/ncomms9032
Harashima, T.; Kojima, C.; Fujii, S.; Kiguchi, M.; Nishino, T. Chem. Commun. 2017, 53, 10378.
doi: 10.1039/C7CC02911J
Xiang, L. M.; Palma, J. L.; Li, Y. Q.; Mujica, V.; Ratner, M. A.; Tao, N. J. Nat. Commun. 2017, 8, 14471.
doi: 10.1038/ncomms14471
Reddy, P.; Jang, S.-Y.; Segalman, R. A.; Majumdar, A. Science 2007, 315, 1568.
doi: 10.1126/science.1137149
Paulsson, M.; Datta, S. Phys. Rev. B 2003, 67, 241403.
doi: 10.1103/PhysRevB.67.241403
Guo, S.; Zhou, G.; Tao, N. Nano Lett. 2013, 13, 4326.
doi: 10.1021/nl4021073
Widawsky, J. R.; Chen, W.; Vazquez, H.; Kim, T.; Breslow, R.; Hybertsen, M. S.; Venkataraman, L. Nano Lett. 2013, 13, 2889.
doi: 10.1021/nl4012276
Kim, Y.; Jeong, W.; Kim, K.; Lee, W.; Reddy, P. Nat. Nanotechnol. 2014, 9, 881.
doi: 10.1038/nnano.2014.209
Garner, M. H.; Li, H.; Chen, Y.; Su, T. A.; Shangguan, Z.; Paley, D. W.; Liu, T.; Ng, F.; Li, H.; Xiao, S.; Nuckolls, C.; Venkataraman, L.; Solomon, G. C. Nature 2018, 558, 415.
doi: 10.1038/s41586-018-0197-9
Miao, R.; Xu, H.; Skripnik, M.; Cui, L.; Wang, K.; Pedersen, K. G. L.; Leijnse, M.; Pauly, F.; Wärnmark, K.; Meyhofer, E.; Reddy, P.; Linke, H. Nano Lett. 2018, 18, 5666.
doi: 10.1021/acs.nanolett.8b02207
Li, Y. Q.; Xiang, L. M.; Palma, J. L.; Asai, Y.; Tao, N. J. Nat. Commun. 2016, 7, 11294.
doi: 10.1038/ncomms11294
Cygan, M. T.; Dunbar, T. D.; Arnold, J. J.; Bumm, L. A.; Shedlock, N. F.; Burgin, T. P.; Jones, L.; Allara, D. L.; Tour, J. M.; Weiss, P. S. J. Am. Chem. Soc. 1998, 120, 2721.
doi: 10.1021/ja973448h
Nogues, C.; Cohen, S. R.; Daube, S. S.; Naaman, R. Phys. Chem. Chem. Phys. 2004, 6, 4459.
doi: 10.1039/b410862k
Cohen, H.; Nogues, C.; Naaman, R.; Porath, D. PNAS 2005, 102, 11589.
doi: 10.1073/pnas.0505272102
Cohen, H.; Nogues, C.; Ullien, D.; Daube, S.; Naaman, R.; Porath, D. Faraday Discuss. 2006, 131, 367.
doi: 10.1039/B507706K
Ullien, D.; Cohen, H.; Porath, D. Nanotechnology 2007, 18, 4.
Livshits, G. I.; Stern, A.; Rotem, D.; Borovok, N.; Eidelshtein, G.; Migliore, A.; Penzo, E.; Wind, S. J.; Felice, R. D.; Skourtis, S. S. Nat. Nanotechnol. 2014, 9, 1040.
doi: 10.1038/nnano.2014.246
Muller, C. J.; van Ruitenbeek, J. M.; de Jongh, L. J. Physica C 1992, 191, 485.
doi: 10.1016/0921-4534(92)90947-B
van Ruitenbeek, J. M.; Alvarez, A.; Piñeyro, I.; Grahmann, C.; Joyez, P.; Devoret, M. H.; Esteve, D.; Urbina, C. Rev. Sci. Instrum. 1996, 67, 108.
doi: 10.1063/1.1146558
Muller, C. J.; de Bruyn Ouboter, R. J. Appl. Phys. 1995, 77, 5231.
doi: 10.1063/1.359273
Zhou, C.; Muller, C. J.; Deshpande, M. R.; Sleight, J. W.; Reed, M. A. Appl. Phys. Lett. 1995, 67, 1160.
doi: 10.1063/1.114994
Martin, C. A.; Ding, D.; van der Zant, H. S. J.; van Ruitenbeek, J. M. New J. Phys. 2008, 10, 065008.
doi: 10.1088/1367-2630/10/6/065008
Kang, N.; Erbe, A.; Scheer, E. New J. Phys. 2008, 10, 9.
Dulic, D.; Tuukkanen, S.; Chung, C.-L.; Isambert, A.; Lavie, P.; Filoramo, A. Nanotechnology 2009, 20, 115502.
doi: 10.1088/0957-4484/20/11/115502
Chen, J.; Reed, M. A.; Rawlett, A. M.; Tour, J. M. Science 1999, 286, 1550.
doi: 10.1126/science.286.5444.1550
Wassel, R. A.; Credo, G. M.; Fuierer, R. R.; Feldheim, D. L.; Gorman, C. B. J. Am. Chem. Soc. 2004, 126, 295.
doi: 10.1021/ja037651q
Perrin, M. L.; Frisenda, R.; Koole, M.; Seldenthuis, J. S.; Gil, J. A. C.; Valkenier, H.; Hummelen, J. C.; Renaud, N.; Grozema, F. C.; Thijssen, J. M.; Dulić, D.; van der Zant, H. S. J. Nat. Nanotechnol. 2014, 9, 830.
doi: 10.1038/nnano.2014.177
Zhu, S. C.; Peng, S. J.; Wu, K. M.; Yip, C. T.; Yao, K. L.; Lam, C. H. Phys. Chem. Chem. Phys. 2018, 20, 21105.
doi: 10.1039/C8CP02935K
Walzer, K.; Marx, E.; Greenham, N. C.; Less, R. J.; Raithby, P. R.; Stokbro, K. J. Am. Chem. Soc. 2004, 126, 1229.
doi: 10.1021/ja036771v
Kang, N.; Erbe, A.; Scheer, E. Appl. Phys. Lett. 2010, 96, 023701.
doi: 10.1063/1.3291113
Liu, S. P.; Weisbrod, S. H.; Tang, Z.; Marx, A.; Scheer, E.; Erbe, A. Angew. Chem., Int. Ed. 2010, 49, 3313.
doi: 10.1002/anie.201000022
Guo, X. F.; Gorodetsky, A. A.; Hone, J.; Barton, J. K.; Nuckolls, C. Nat. Nanotechnol. 2008, 3, 163.
doi: 10.1038/nnano.2008.4
Roy, S.; Vedala, H.; Roy, A. D.; Kim, D.-h.; Doud, M.; Mathee, K.; Shin, H.-k.; Shimamoto, N.; Prasad, V.; Choi, W. Nano Lett. 2008, 8, 26.
doi: 10.1021/nl0716451
Wang, X. L.; Gao, L.; Liang, B.; Li, X.; Guo, X. F. J. Mat. Chem. B 2015, 3, 5150.
doi: 10.1039/C5TB00666J
Wang, J. D.; Shen, F. X.; Wang, Z. X.; He, G.; Qin, J. W.; Cheng, N. Y.; Yao, M. S.; Li, L. D.; Guo, X. F. Angew. Chem., Int. Ed. 2014, 53, 5038.
He, G.; Li, J.; Ci, H. N.; Qi, C. M.; Guo, X. F. Angew. Chem., Int. Ed. 2016, 55, 9036.
doi: 10.1002/anie.201603038
Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036
Jin Tong , Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113
Yong Shu , Xing Chen , Sai Duan , Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102
Laiying Zhang , Yinghuan Wu , Yazi Yu , Yecheng Xu , Haojie Zhang , Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126
Yang YANG , Pengcheng LI , Zhan SHU , Nengrong TU , Zonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440
Yuhao SUN , Qingzhe DONG , Lei ZHAO , Xiaodan JIANG , Hailing GUO , Xianglong MENG , Yongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169
Wenyan Dan , Weijie Li , Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
Rui Gao , Ying Zhou , Yifan Hu , Siyuan Chen , Shouhong Xu , Qianfu Luo , Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050
Wenbing Hu , Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015
Pingping Zhu , Yongjun Xie , Yuanping Yi , Yu Huang , Qiang Zhou , Shiyan Xiao , Haiyang Yang , Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063
Kai Yang , Gehua Bi , Yong Zhang , Delin Jin , Ziwei Xu , Qian Wang , Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045
Zheqi Wang , Yawen Lin , Shunliu Deng , Huijun Zhang , Jinmei Zhou . Antiviral Strategies: A Brief Review of the Development History of Small Molecule Antiviral Drugs. University Chemistry, 2024, 39(9): 85-93. doi: 10.12461/PKU.DXHX202403108
Jia Yao , Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
Hongyun Liu , Jiarun Li , Xinyi Li , Zhe Liu , Jiaxuan Li , Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070
Rui Li , Jiayu Zhang , Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051
Shuang Meng , Haixin Long , Zhou Zhou , Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008
Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060
Junjie Zhang , Yue Wang , Qiuhan Wu , Ruquan Shen , Han Liu , Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084