Citation: Yang Wei-Yu, Lei Zhi-Chao, Hong Wenjing, Huang Fei-Zhou. Advances in Charge Transport through DNA Molecular Junction by Employing Electrodes Pair with Nanometer-sized Separation[J]. Acta Chimica Sinica, ;2019, 77(10): 951-963. doi: 10.6023/A19040127 shu

Advances in Charge Transport through DNA Molecular Junction by Employing Electrodes Pair with Nanometer-sized Separation

  • Corresponding author: Hong Wenjing, whong@xmu.edu.cn Huang Fei-Zhou, huangfeizhou@csu.edu.cn
  • Received Date: 11 April 2019
    Available Online: 20 October 2019

    Fund Project: the National Natural Science Foundation of China 21722305the National Key R&D Program of China 2017YFA0204902the New Xiangya Talent Project of the Third Xiangya Hospital of Central South University 20150203Project supported by the New Xiangya Talent Project of the Third Xiangya Hospital of Central South University (No. 20150203), the National Key R&D Program of China (No. 2017YFA0204902), and the National Natural Science Foundation of China (No. 21722305)

Figures(19)

  • Molecular electronics is an interdisciplinary science that mainly studies the charge transport through molecules and its main goal is to fabricate molecular devices with electrical functionalities. In the state-of-art of molecular electronics, the research paradigm is to fabricate electrodes pair with nanometer-sized separation and construct the molecular junction through the assembly of target molecules with the electrodes pair. With this framework, the target molecule can be integrated to the macroscopic measurement circuit. DNA is one of the most significant biomolecules in natural sciences. It had drawn great attentions in biomedicine because of the carried genetic instructions. In molecular electronics, DNA also had attracted much interest due to the distinct structure and its capability of long-range charge transport. Nevertheless, in the early stage of molecular electronics, the probe molecules were limited to those with simple structures and short lengths. In recent years, molecular electronics had witnessed a rapid progress due to the developments in micro/nano-fabrication and the detection for weak current signal. Specifically, it includes the improvements in the success rate, efficiency, and stability of the fabricated molecular device. Benefiting from that, the probe molecules had been extended to a number of complex compounds like DNA. We give a brief introduction to the recent progress in the fabrication of DNA molecular junctions and the studies on the corresponding charge transport, most of which were made by using the research paradigm of fabricating electrodes pair with nanometer-sized separation. According to the fabrication methods that employed, these advances were introduced in two classes. One is that made by the as-called break junction methods, which include STM-break junction, conductive AFM and mechanically controllable break junction. The other is that made by the as-called cutting methods, which include cutting of carbon nanotube, graphene and silicon nanowire. We summarize the historical development of these methods and give a comparison between them. We also introduce some representative research on the charge transport through DNA molecular junction, and discuss the distinct features of DNA in electrical properties compared to the conventional small molecules. To conclude, we give a prospect on the future development of the studies on charge transport through DNA molecular junction.
  • 加载中
    1. [1]

      Franklin, R. E.; Gosling, R. G. Nature 1953, 171, 740.  doi: 10.1038/171740a0

    2. [2]

      Watson, J. D.; Crick, F. H. C. Nature 1953, 171, 737.  doi: 10.1038/171737a0

    3. [3]

      Wilkins, M. H. F.; Stokes, A. R.; Wilson, H. R. Nature 1953, 171, 738.  doi: 10.1038/171738a0

    4. [4]

      Feynman, R. P. In Engineering and Science, Vol. 23, The Caltech Alumni Magazine, 1960.

    5. [5]

      Asanuma, H.; Liang, X.; Nishioka, H.; Matsunaga, D.; Liu, M.; Komiyama, M. Nat. Protoc. 2007, 2, 203.  doi: 10.1038/nprot.2006.465

    6. [6]

      Zhou, C.; Yang, Z.; Liu, D. J. Am. Chem. Soc. 2012, 134, 1416.  doi: 10.1021/ja209590u

    7. [7]

      Robinson, B. H.; Seeman, N. C. Protein Eng. Des. Sel. 1987, 1, 295.  doi: 10.1093/protein/1.4.295

    8. [8]

      Adleman, L. Science 1994, 266, 1021.  doi: 10.1126/science.7973651

    9. [9]

      Alivisatos, A. P.; Johnsson, K. P.; Peng, X.; Wilson, T. E.; Loweth, C. J.; Bruchez Jr., M. P.; Schultz, P. G. Nature 1996, 382, 609.  doi: 10.1038/382609a0

    10. [10]

      Meggers, E.; Kusch, D.; Spichty, M.; Wille, U.; Giese, B. Angew. Chem., Int. Ed. 1998, 37, 460.  doi: 10.1002/(SICI)1521-3773(19980302)37:4<460::AID-ANIE460>3.0.CO;2-U

    11. [11]

      Sun, Y.; Cheng, P.; Yan, S.; Liao, D. Chin. Sci. Bull. 2000, 45, 2357 (in Chinese).  doi: 10.3321/j.issn:0023-074X.2000.22.002

    12. [12]

      Cees, D.; Mark, R. Phys. World 2001, 14, 29.

    13. [13]

      Xu, X.; Han, B.; Yu, X.; Zhu, Y. Acta Chim. Sinica DOI:10.6023/A19010019 (in chinese).  doi: 10.6023/A19010019

    14. [14]

      Yang, Y.; Liu, J. Y.; Yan, R. W.; Wu, D. Y.; Tian, Z. Q. Chem. J. Chin. Univ.-Chin. 2015, 36, 9 (in Chinese).

    15. [15]

      Xiang, D.; Wang, X.; Jia, C.; Lee, T.; Guo, X. Chem. Rev. 2016, 116, 4318.  doi: 10.1021/acs.chemrev.5b00680

    16. [16]

      Li, T.; Hu, W.; Zhu, D. Adv. Mater. 2010, 22, 286.  doi: 10.1002/adma.200900864

    17. [17]

      Kushmerick, J. G.; Holt, D. B.; Pollack, S. K.; Ratner, M. A.; Yang, J. C.; Schull, T. L.; Naciri, J.; Moore, M. H.; Shashidhar, R. J. Am. Chem. Soc. 2002, 124, 10654.  doi: 10.1021/ja027090n

    18. [18]

      Kushmerick, J. G.; Holt, D. B.; Yang, J. C.; Naciri, J.; Moore, M. H.; Shashidhar, R. Phys. Rev. Lett. 2002, 89, 086802.  doi: 10.1103/PhysRevLett.89.086802

    19. [19]

      Nijhuis, C. A.; Reus, W. F.; Whitesides, G. M. J. Am. Chem. Soc. 2010, 132, 18386.  doi: 10.1021/ja108311j

    20. [20]

      Zhang, W.; Liu, H.; Lu, J.; Ni, L.; Liu, H.; Li, Q.; Qiu, M.; Xu, B.; Lee, T.; Zhao, Z.; Wang, X.; Wang, M.; Wang, T.; Offenhäusser, A.; Mayer, D.; Hwang, W.-T.; Xiang, D. Light-Sci. Appl. 2019, 8, 34.  doi: 10.1038/s41377-019-0144-z

    21. [21]

      Reed, M. A.; Zhou, C.; Muller, C. J.; Burgin, T. P.; Tour, J. M. Science 1997, 278, 252.  doi: 10.1126/science.278.5336.252

    22. [22]

      Xu, B. Q.; Tao, N. J. J. Science 2003, 301, 1221.

    23. [23]

      Haiss, W.; Wang, C. S.; Grace, I.; Batsanov, A. S.; Schiffrin, D. J.; Higgins, S. J.; Bryce, M. R.; Lambert, C. J.; Nichols, R. J. Nat. Mater. 2006, 5, 995.  doi: 10.1038/nmat1781

    24. [24]

      Yu, P.; Feng, A.; Zhao, S.; Wei, J.; Yang, Y.; Shi, J.; Hong, W. Acta Phys.-Chim. Sin. 2019, 35, 829 (in Chinese).  doi: 10.3866/PKU.WHXB201811027

    25. [25]

      Park, H.; Lim, A. K. L.; Alivisatos, A. P.; Park, J.; McEuen, P. L. Appl. Phys. Lett. 1999, 75, 301.  doi: 10.1063/1.124354

    26. [26]

      Song, H.; Kim, Y.; Jang, Y. H.; Jeong, H.; Reed, M. A.; Lee, T. Nature 2009, 462, 1039.  doi: 10.1038/nature08639

    27. [27]

      Li, C. Z.; Tao, N. J. Appl. Phys. Lett. 1998, 72, 894.  doi: 10.1063/1.120928

    28. [28]

      Qing, Q.; Chen, F.; Li, P. G.; Tang, W. H.; Wu, Z. Y.; Liu, Z. F. Angew. Chem., Int. Ed. 2005, 44, 7771.  doi: 10.1002/anie.200502680

    29. [29]

      Yang, Y.; Liu, J.-Y.; Chen, Z.-B.; Tian, J.-H.; Jin, X.; Liu, B.; Li, X.; Luo, Z.-Z.; Lu, M.; Yang, F.-Z.; Tao, N.; Tian, Z.-Q. Nanotechnology 2011, 22, 275313.  doi: 10.1088/0957-4484/22/27/275313

    30. [30]

      Sorgenfrei, S.; Chiu, C.-y.; Gonzalez Jr., R. L.; Yu, Y.-J.; Kim, P.; Nuckolls, C.; Shepard, K. L. Nat. Nanotechnol. 2011, 6, 126.  doi: 10.1038/nnano.2010.275

    31. [31]

      Goldsmith, B. R.; Coroneus, J. G.; Khalap, V. R.; Kane, A. A.; Weiss, G. A.; Collins, P. G. Science 2007, 315, 77.  doi: 10.1126/science.1135303

    32. [32]

      Duan, H.; Manfrinato, V. R.; Yang, J. K. W.; Winston, D.; Cord, B. M.; Berggren, K. K. J. Vac. Sci. Technol., B: Microelectron. Nano- meter Struct. 2010, 28, C6H11.

    33. [33]

      Nedelcu, M.; Saifullah, M. S. M.; Hasko, D. G.; Jang, A.; Anderson, D.; Huck, W. T. S.; Jones, G. A. C.; Welland, M. E.; Kang, D. J.; Steiner, U. Adv. Funct. Mater. 2010, 20, 2317.  doi: 10.1002/adfm.201000219

    34. [34]

      Qin, L.; Park, S.; Huang, L.; Mirkin, C. A. Science 2005, 309, 113.  doi: 10.1126/science.1112666

    35. [35]

      Chen, X.; Braunschweig, A. B.; Wiester, M. J.; Yeganeh, S.; Ratner, M. A.; Mirkin, C. A. Angew. Chem., Int. Ed. 2009, 48, 5178.  doi: 10.1002/anie.200806028

    36. [36]

      Guo, X. F.; Small, J. P.; Klare, J. E.; Wang, Y. L.; Purewal, M. S.; Tam, I. W.; Hong, B. H.; Caldwell, R.; Huang, L. M.; O'Brien, S.; Yan, J. M.; Breslow, R.; Wind, S. J.; Hone, J.; Kim, P.; Nuckolls, C. Science 2006, 311, 356.  doi: 10.1126/science.1120986

    37. [37]

      Cao, Y.; Dong, S. H.; Liu, S.; He, L.; Gan, L.; Yu, X. M.; Steigerwald, M. L.; Wu, X. S.; Liu, Z. F.; Guo, X. F. Angew. Chem., Int. Ed. 2012, 51, 12228.  doi: 10.1002/anie.201205607

    38. [38]

      Huang, B.; Liu, X.; Yuan, Y.; Hong, Z.-W.; Zheng, J.-F.; Pei, L.-Q.; Shao, Y.; Li, J.-F.; Zhou, X.-S.; Chen, J.-Z.; Jin, S.; Mao, B.-W. J. Am. Chem. Soc. 2018, 140, 17685.  doi: 10.1021/jacs.8b10450

    39. [39]

      Wang, L.; Gong, Z.-L.; Li, S.-Y.; Hong, W.; Zhong, Y.-W.; Wang, D.; Wan, L.-J. Angew. Chem., Int. Ed. 2016, 55, 12393.  doi: 10.1002/anie.201605622

    40. [40]

      Cui, X. D.; Primak, A.; Zarate, X.; Tomfohr, J.; Sankey, O. F.; Moore, A. L.; Moore, T. A.; Gust, D.; Harris, G.; Lindsay, S. M. Science 2001, 294, 571.  doi: 10.1126/science.1064354

    41. [41]

      Huang, Z. F.; Xu, B. Q.; Chen, Y. C.; Di Ventra, M.; Tao, N. J. Nano Lett. 2006, 6, 1240.  doi: 10.1021/nl0608285

    42. [42]

      Guo, C.; Chen, X.; Ding, S.-Y.; Mayer, D.; Wang, Q.; Zhao, Z.; Ni, L.; Liu, H.; Lee, T.; Xu, B.; Xiang, D. ACS Nano 2018, 12, 11229.  doi: 10.1021/acsnano.8b05826

    43. [43]

      Wen, H.-M.; Yang, Y.; Zhou, X.-S.; Liu, J.-Y.; Zhang, D.-B.; Chen, Z.-B.; Wang, J.-Y.; Chen, Z.-N.; Tian, Z.-Q. Chem. Sci. 2013, 4, 2471.  doi: 10.1039/c3sc50312g

    44. [44]

      Liu, J.; Zhao, X.; Zheng, J.; Huang, X.; Tang, Y.; Wang, F.; Li, R.; Pi, J.; Huang, C.; Wang, L.; Yang, Y.; Shi, J.; Mao, B.-W.; Tian, Z.-Q.; Bryce, M. R.; Hong, W. Chem 2019, 5, 390.  doi: 10.1016/j.chempr.2018.11.002

    45. [45]

      Cai, S.; Deng, W.; Huang, F.; Chen, L.; Tang, C.; He, W.; Long, S.; Li, R.; Tan, Z.; Liu, J.; Shi, J.; Liu, Z.; Xiao, Z.; Zhang, D.; Hong, W. Angew. Chem., Int. Ed. 2019, 58, 3829.  doi: 10.1002/anie.201813137

    46. [46]

      Zhang, Y.-P.; Chen, L.-C.; Zhang, Z.-Q.; Cao, J.-J.; Tang, C.; Liu, J.; Duan, L.-L.; Huo, Y.; Shao, X.; Hong, W.; Zhang, H.-L. J. Am. Chem. Soc. 2018, 140, 6531.  doi: 10.1021/jacs.8b02825

    47. [47]

      Chen, L.; Wang, Y. H.; He, B.; Nie, H.; Hu, R.; Huang, F.; Qin, A.; Zhou, X. S.; Zhao, Z.; Tang, B. Z. Angew. Chem., Int. Ed. 2015, 54, 4231.  doi: 10.1002/anie.201411909

    48. [48]

      Venkataraman, L.; Klare, J. E.; Nuckolls, C.; Hybertsen, M. S.; Steigerwald, M. L. Nature 2006, 442, 904.  doi: 10.1038/nature05037

    49. [49]

      Liu, L.; Zhang, Q.; Tao, S.; Zhao, C.; Almutib, E.; Al-Galiby, Q.; Bailey, S. W. D.; Grace, I.; Lambert, C. J.; Du, J.; Yang, L. Nanoscale 2016, 8, 14507.  doi: 10.1039/C6NR03807G

    50. [50]

      Hihath, J.; Xu, B. Q.; Zhang, P. M.; Tao, N. J. PNAS 2005, 102, 16979.  doi: 10.1073/pnas.0505175102

    51. [51]

      Bruot, C.; Palma, J. L.; Xiang, L. M.; Mujica, V.; Ratner, M. A.; Tao, N. J. Nat. Commun. 2015, 6, 8032.  doi: 10.1038/ncomms9032

    52. [52]

      Harashima, T.; Kojima, C.; Fujii, S.; Kiguchi, M.; Nishino, T. Chem. Commun. 2017, 53, 10378.  doi: 10.1039/C7CC02911J

    53. [53]

      Xiang, L. M.; Palma, J. L.; Li, Y. Q.; Mujica, V.; Ratner, M. A.; Tao, N. J. Nat. Commun. 2017, 8, 14471.  doi: 10.1038/ncomms14471

    54. [54]

      Reddy, P.; Jang, S.-Y.; Segalman, R. A.; Majumdar, A. Science 2007, 315, 1568.  doi: 10.1126/science.1137149

    55. [55]

      Paulsson, M.; Datta, S. Phys. Rev. B 2003, 67, 241403.  doi: 10.1103/PhysRevB.67.241403

    56. [56]

      Guo, S.; Zhou, G.; Tao, N. Nano Lett. 2013, 13, 4326.  doi: 10.1021/nl4021073

    57. [57]

      Widawsky, J. R.; Chen, W.; Vazquez, H.; Kim, T.; Breslow, R.; Hybertsen, M. S.; Venkataraman, L. Nano Lett. 2013, 13, 2889.  doi: 10.1021/nl4012276

    58. [58]

      Kim, Y.; Jeong, W.; Kim, K.; Lee, W.; Reddy, P. Nat. Nanotechnol. 2014, 9, 881.  doi: 10.1038/nnano.2014.209

    59. [59]

      Garner, M. H.; Li, H.; Chen, Y.; Su, T. A.; Shangguan, Z.; Paley, D. W.; Liu, T.; Ng, F.; Li, H.; Xiao, S.; Nuckolls, C.; Venkataraman, L.; Solomon, G. C. Nature 2018, 558, 415.  doi: 10.1038/s41586-018-0197-9

    60. [60]

      Miao, R.; Xu, H.; Skripnik, M.; Cui, L.; Wang, K.; Pedersen, K. G. L.; Leijnse, M.; Pauly, F.; Wärnmark, K.; Meyhofer, E.; Reddy, P.; Linke, H. Nano Lett. 2018, 18, 5666.  doi: 10.1021/acs.nanolett.8b02207

    61. [61]

      Li, Y. Q.; Xiang, L. M.; Palma, J. L.; Asai, Y.; Tao, N. J. Nat. Commun. 2016, 7, 11294.  doi: 10.1038/ncomms11294

    62. [62]

      Cygan, M. T.; Dunbar, T. D.; Arnold, J. J.; Bumm, L. A.; Shedlock, N. F.; Burgin, T. P.; Jones, L.; Allara, D. L.; Tour, J. M.; Weiss, P. S. J. Am. Chem. Soc. 1998, 120, 2721.  doi: 10.1021/ja973448h

    63. [63]

      Nogues, C.; Cohen, S. R.; Daube, S. S.; Naaman, R. Phys. Chem. Chem. Phys. 2004, 6, 4459.  doi: 10.1039/b410862k

    64. [64]

      Cohen, H.; Nogues, C.; Naaman, R.; Porath, D. PNAS 2005, 102, 11589.  doi: 10.1073/pnas.0505272102

    65. [65]

      Cohen, H.; Nogues, C.; Ullien, D.; Daube, S.; Naaman, R.; Porath, D. Faraday Discuss. 2006, 131, 367.  doi: 10.1039/B507706K

    66. [66]

      Ullien, D.; Cohen, H.; Porath, D. Nanotechnology 2007, 18, 4.

    67. [67]

      Livshits, G. I.; Stern, A.; Rotem, D.; Borovok, N.; Eidelshtein, G.; Migliore, A.; Penzo, E.; Wind, S. J.; Felice, R. D.; Skourtis, S. S. Nat. Nanotechnol. 2014, 9, 1040.  doi: 10.1038/nnano.2014.246

    68. [68]

      Muller, C. J.; van Ruitenbeek, J. M.; de Jongh, L. J. Physica C 1992, 191, 485.  doi: 10.1016/0921-4534(92)90947-B

    69. [69]

      van Ruitenbeek, J. M.; Alvarez, A.; Piñeyro, I.; Grahmann, C.; Joyez, P.; Devoret, M. H.; Esteve, D.; Urbina, C. Rev. Sci. Instrum. 1996, 67, 108.  doi: 10.1063/1.1146558

    70. [70]

      Muller, C. J.; de Bruyn Ouboter, R. J. Appl. Phys. 1995, 77, 5231.  doi: 10.1063/1.359273

    71. [71]

      Zhou, C.; Muller, C. J.; Deshpande, M. R.; Sleight, J. W.; Reed, M. A. Appl. Phys. Lett. 1995, 67, 1160.  doi: 10.1063/1.114994

    72. [72]

      Martin, C. A.; Ding, D.; van der Zant, H. S. J.; van Ruitenbeek, J. M. New J. Phys. 2008, 10, 065008.  doi: 10.1088/1367-2630/10/6/065008

    73. [73]

      Kang, N.; Erbe, A.; Scheer, E. New J. Phys. 2008, 10, 9.

    74. [74]

      Dulic, D.; Tuukkanen, S.; Chung, C.-L.; Isambert, A.; Lavie, P.; Filoramo, A. Nanotechnology 2009, 20, 115502.  doi: 10.1088/0957-4484/20/11/115502

    75. [75]

      Chen, J.; Reed, M. A.; Rawlett, A. M.; Tour, J. M. Science 1999, 286, 1550.  doi: 10.1126/science.286.5444.1550

    76. [76]

      Wassel, R. A.; Credo, G. M.; Fuierer, R. R.; Feldheim, D. L.; Gorman, C. B. J. Am. Chem. Soc. 2004, 126, 295.  doi: 10.1021/ja037651q

    77. [77]

      Perrin, M. L.; Frisenda, R.; Koole, M.; Seldenthuis, J. S.; Gil, J. A. C.; Valkenier, H.; Hummelen, J. C.; Renaud, N.; Grozema, F. C.; Thijssen, J. M.; Dulić, D.; van der Zant, H. S. J. Nat. Nanotechnol. 2014, 9, 830.  doi: 10.1038/nnano.2014.177

    78. [78]

      Zhu, S. C.; Peng, S. J.; Wu, K. M.; Yip, C. T.; Yao, K. L.; Lam, C. H. Phys. Chem. Chem. Phys. 2018, 20, 21105.  doi: 10.1039/C8CP02935K

    79. [79]

      Walzer, K.; Marx, E.; Greenham, N. C.; Less, R. J.; Raithby, P. R.; Stokbro, K. J. Am. Chem. Soc. 2004, 126, 1229.  doi: 10.1021/ja036771v

    80. [80]

      Kang, N.; Erbe, A.; Scheer, E. Appl. Phys. Lett. 2010, 96, 023701.  doi: 10.1063/1.3291113

    81. [81]

      Liu, S. P.; Weisbrod, S. H.; Tang, Z.; Marx, A.; Scheer, E.; Erbe, A. Angew. Chem., Int. Ed. 2010, 49, 3313.  doi: 10.1002/anie.201000022

    82. [82]

      Guo, X. F.; Gorodetsky, A. A.; Hone, J.; Barton, J. K.; Nuckolls, C. Nat. Nanotechnol. 2008, 3, 163.  doi: 10.1038/nnano.2008.4

    83. [83]

      Roy, S.; Vedala, H.; Roy, A. D.; Kim, D.-h.; Doud, M.; Mathee, K.; Shin, H.-k.; Shimamoto, N.; Prasad, V.; Choi, W. Nano Lett. 2008, 8, 26.  doi: 10.1021/nl0716451

    84. [84]

      Wang, X. L.; Gao, L.; Liang, B.; Li, X.; Guo, X. F. J. Mat. Chem. B 2015, 3, 5150.  doi: 10.1039/C5TB00666J

    85. [85]

      Wang, J. D.; Shen, F. X.; Wang, Z. X.; He, G.; Qin, J. W.; Cheng, N. Y.; Yao, M. S.; Li, L. D.; Guo, X. F. Angew. Chem., Int. Ed. 2014, 53, 5038.

    86. [86]

      He, G.; Li, J.; Ci, H. N.; Qi, C. M.; Guo, X. F. Angew. Chem., Int. Ed. 2016, 55, 9036.  doi: 10.1002/anie.201603038

  • 加载中
    1. [1]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    2. [2]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    3. [3]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    4. [4]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    5. [5]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    6. [6]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    7. [7]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    8. [8]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    9. [9]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    10. [10]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    11. [11]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    12. [12]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    13. [13]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    14. [14]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    15. [15]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    16. [16]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    17. [17]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    18. [18]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

Metrics
  • PDF Downloads(36)
  • Abstract views(1846)
  • HTML views(277)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return