Citation: Wang Yongsheng, Zhao Yunlu, Zhao Zhenzhen, Lan Xiaolin, Xu Jinxia, Xu Weixiang, Duan Zhengkang. Study on Preparation of Cu-ZrO2 Catalyst Coated by Nitrogen-Doped Carbon and Catalytic Dehydrogenation Performance[J]. Acta Chimica Sinica, ;2019, 77(7): 661-668. doi: 10.6023/A19040124 shu

Study on Preparation of Cu-ZrO2 Catalyst Coated by Nitrogen-Doped Carbon and Catalytic Dehydrogenation Performance

  • Received Date: 10 April 2019
    Available Online: 12 July 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21576229)the National Natural Science Foundation of China 21576229

Figures(9)

  • Glyphosate is one of the most widely used herbicides in the world. Current production of glyphosate starts with iminodiacetic acid (IDA). One method of producing IDA starts with the catalytic dehydrogenation of diethanolamine (DEA) using Cu-ZrO2 (CZ), which is a fairly simple, pollution-free, and cost-effective process. The Cu-ZrO2 catalysts used in this dehydrogenation are fairly efficient and inexpensive, but they tend to agglomerate and inactivate. The development of highly efficient and stable Cu-ZrO2 catalyst is of great significance. Carbon coated nano-metal particles are a new type of nano-carbon/metal composite materials. Metal materials can be imparted in a small space due to the surface acidity and alkalinity of carbon coated materials and their unique structural characteristics, which is of great significance for the dispersion and oxidation resistance of the loaded nano-metal materials. In this study, melamine was used as a carbon source and a nitrogen source to prepare a Cu-ZrO2 nanocatalyst (CZ@CN catalyst) coated with nitrogen-doped carbon (CN) with core-shell structure. The effect of different molar ratios of copper and melamine on the catalyst was studied. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), N2 physical adsorption and desorption test (BET), H2 temperature-programmed reduction (H2-TPR) were used to investigate the morphology and structure of the catalyst. The catalytic performance of the catalyst for the dehydrogenation of diethanolamine was investigated. When the molar ratio of copper to melamine is 4:1, the prepared CZ@CN-1 catalyst has the highest catalytic activity. The yield of sodium iminodiacetic acid is 92.80%, and the reaction time is shorter than that of ordinary CZ catalyst by 40%. The yield of sodium iminodiacetic acid still reaches 88.45% after reusing 8 times. The results showed that the introduction of the CN layer makes the catalyst exhibit more Lewis basicity. Meanwhile, it is beneficial to the activation of hydroxyl groups and the transfer of hydrogen in the dehydrogenation reaction. The CN layer can also stabilize copper nanoparticles and improve the stability of the catalyst.
  • 加载中
    1. [1]

      Zhu, Y.; Kong, X.; Li, X.; Ding, G.; Zhu, Y.; Li, Y. W. ACS Catal. 2014, 4, 3612.  doi: 10.1021/cs5009283

    2. [2]

      Duan, Z. K.; Li, S.; Xie, F.; Yan, J. H.; Zhang, T. Chem. Res. Appl. 2015, 27, 417.  doi: 10.3969/j.issn.1004-1656.2015.04.001

    3. [3]

      Tang, Q. L.; Liu, Z. P. J. Phys. Chem. 2010, 114, 8423.  doi: 10.1021/jp104246k

    4. [4]

      Agrell, J.; Birgersson, H.; Boutonnet, M.; Melián-Cabrera, I.; Navarro, R. M.; Fierro, J. L. G. J. Catal. 2003, 219, 389.  doi: 10.1016/S0021-9517(03)00221-5

    5. [5]

      Huo, J. P.; Song, H. H.; Chen, X. H.; Zhao, S. Q.; Xu, C. M. Carbon Techniques. 2006, 25, 22.

    6. [6]

      Liu, J. Y.; Yang, P. J.; Zhang, J. F.; Ma, S. J. Petrochem. Technol. 2004, 33, 330.  doi: 10.3321/j.issn:1000-8144.2004.04.008

    7. [7]

      Li, H. T.; Chen, H. R.; Zhang, Y.; Gao, C. G.; Zhao, Y. X. Chinese J. Catal. 2011, 32, 111.

    8. [8]

      Roy, R. K.; Lee, K. J. Biomed. Mater. Res. B 2010, 83B, 72.

    9. [9]

      Zhang, Z. Q.; Ge, C. X.; Chen, Y. G.; Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. Acta Chim. Sinica 2019, 77, 60.  doi: 10.3969/j.issn.0253-2409.2019.01.008
       

    10. [10]

      Su, D. S.; Zhang, J.; Frank, B.; Thomas, A.; Wang, X.; Parak-nowitsch, J.; Schlögl, R. ChemSusChem 2010, 3, 169.  doi: 10.1002/cssc.v3:2

    11. [11]

      Mabena, L. F.; Sinha Ray, S.; Mhlanga, S. D.; Coville, N. J. Appl. Nanosci. 2011, 1, 67.  doi: 10.1007/s13204-011-0013-4

    12. [12]

      Dai, X. Q.; Zhu, Y. B.; Xu, X. L.; Wen, J. Q. Chin. J. Org. Chem. 2017, 37, 577.

    13. [13]

      Watanabe, H.; Asano, S.; Fujita, S.; Yoshida, H.; Arai, M. ACS Catal. 2015, 5, 2886.  doi: 10.1021/acscatal.5b00375

    14. [14]

      Zhang, P.; Wang, Q. N.; Yang, X.; Wang, D.; Li, W. C.; Zheng, Y. P.; Chen, M. S.; Lu, A. H. ChemCatChem 2017, 9, 505.  doi: 10.1002/cctc.v9.3

    15. [15]

      Shi, R. N.; Zhao, J. X.; Liu, S. S.; Sun, W.; Li, H. X.; Hao, P. P.; Li, Z.; Ren, J. Carbon 2018, 130, 185.  doi: 10.1016/j.carbon.2018.01.011

    16. [16]

      Wen, Z.; Liu, J.; Li, J. Adv. Mater. 2008, 20, 743.  doi: 10.1002/(ISSN)1521-4095

    17. [17]

      Unnikrishnan, P.; Srinivas, D. Ind. Eng. Chem. Res. 2012, 51, 6356.  doi: 10.1021/ie300678p

    18. [18]

      Hu, Q.; Yang, L.; Fan, G. L.; Li, F. Chem. Nano. Mat. 2016, 2, 888.

    19. [19]

      Wang, J.; Lei, Z.; Qin, H.; Zhang, L.; Li, F. Ind. Eng. Chem. Res. 2011, 50, 7120.  doi: 10.1021/ie2000264

    20. [20]

      Hu, Q.; Fan, G.; Yang, L.; Cao, X.; Zhang, P.; Wang, B.; Li, F. Green Chem. 2016, 18, 2317.  doi: 10.1039/C5GC02924D

    21. [21]

      Xu, J.; Shen, K.; Xue, B. J. Mol. Cayal. A 2013, 372, 105.  doi: 10.1016/j.molcata.2013.02.019

    22. [22]

      ABUDUHEIREMU, Awati; Zhang, D. D.; HALIDAN, Maimaiti Chem. J. Chin. Univ. 2019, 40, 306.  doi: 10.7503/cjcu20180597

    23. [23]

      Chen, S.; Bi, J.; Zhao, L.; Yang, C.; Ma, Y.; Wu, Q.; Wang, X.; Hu, Z. Adv. Mater. 2012, 24, 5593.  doi: 10.1002/adma.201202424

    24. [24]

      Sharitfi, T.; Hu, G.; Jia, X.; Wagberg, T. ACS Nano 2012, 6, 8904.  doi: 10.1021/nn302906r

    25. [25]

      Wang, X. X.; Zhang, L. H.; Lin, H. J.; Nong, Q. Y.; Wu, Y.; Wu, T. H.; He, Y. M. RSC Adv. 2014, 4, 40029.  doi: 10.1039/C4RA06035K

    26. [26]

      Yang, Y.; Duan, Z.; Liu, W. Chem. Reac. Eng. Technol. 2001, 17, 210.

    27. [27]

      Balaraman, E.; Khaskin, E.; Leitus, G.; Milstein, D. Nat. Chem. 2013, 5, 122.  doi: 10.1038/nchem.1536

    28. [28]

      Neurock, M.; Tao, Z.; Chemburkar, A.; Hibbitts, D. D.; Lglesia, E. Faraday Discuss. 2017, 197, 181.

  • 加载中
    1. [1]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    2. [2]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    3. [3]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    4. [4]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    5. [5]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    6. [6]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    7. [7]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    8. [8]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    9. [9]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    10. [10]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    11. [11]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    12. [12]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    13. [13]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    14. [14]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    15. [15]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    16. [16]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    17. [17]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    18. [18]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    19. [19]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    20. [20]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

Metrics
  • PDF Downloads(10)
  • Abstract views(1044)
  • HTML views(95)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return