Citation: Zhao Yong, Li Shihong, Zhang Miaomiao, Liu Feng. ynthesis of β, γ-Unsaturated Esters and γ-Ketone Esters with Amino Acid Ester-Derived Katritzky Salts[J]. Acta Chimica Sinica, ;2019, 77(9): 916-921. doi: 10.6023/A19040121 shu

ynthesis of β, γ-Unsaturated Esters and γ-Ketone Esters with Amino Acid Ester-Derived Katritzky Salts

  • Corresponding author: Liu Feng, fliu2@suda.edu.cn
  • Received Date: 8 April 2019
    Available Online: 22 September 2019

    Fund Project: Project supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 18KJA350001)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China 18KJA350001

Figures(3)

  • β, γ-Unsaturated ester and γ-ketone ester are important synthons, which can be used to convert into various heterocyclic compounds, natural products and pharmaceuticals. The development of efficient methods for the synthesis of β, γ-unsaturated ester and γ-ketone ester compounds has attracted much attention from synthetic chemists. By using Katritzky pyridinium salts as radical precursors, commercially available Ru(bpy)3Cl2•6H2O as photocatalyst, K2CO3 as base, and dichloromethane (DCM) as solvent, we developed a simple and efficient method for the synthesis of a series of β, γ-unsaturated esters and γ-ketone esters by C-N bond activation. Bench-stable and easily handled redox-active Katritzky pyridinium salts derived from abundant amino acids were used as radical precursors for the alkylation of 1, 1-diarylethylene and aryl enol silyl ether species upon irradiation with household blue LEDs. The reaction displays an excellent functional group tolerance and a potential utility for amino acids functionalization, allowing to access desired products in moderate to good yields. Moreover, under air conditions, the reaction has moderate compatibility. Scaling up the reaction in grams, the yield was higher and the target product was obtained with 91% yield. Control experiments demonstrated that the photocatalyst and visible light were both essential for the success of the reaction. Performing the reaction in the presence of radical scavenger TEMPO, did lead to no desired product 3a formation. Moreover, a TEMPO-trapped product was determined by MS analysis and NMR, indicating a radical-type mechanism of this reaction. It is of note that this protocol could offer a powerful complementary strategy for the use of amino acids that were also employed in photoredox-catalyzed decarboxylative reactions. A representative procedure for this reaction is as following:A 10 mL oven-dried Schlenk-tube was charged with 1a (111.5 mg, 0.20 mmol), Ru(bpy)3Cl2•6H2O (3.0 mg, 2 mol%), K2CO3 (55.2 mg, 0.40 mmol) and a magnetic stirring bar. The tube was evacuated and back-filled three times with argon. A solution of 2a (53 μL, 0.30 mmol) in DCM (2 mL) was injected into the tube by syringe. The resulting mixture was stirred at room temperature upon irradiation with blue LEDs (22 W) and monitored by thin-layer chromatography (TLC). After completion, the solvent was then removed under reduced pressure and the residue was purified by flash column chromatography on silica gel to give 3a as an off-white solid (42.7 mg, 65% yield).
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      For selected recent examples, see: (a) Kautzky, J. A.; Wang, T.; Evans, R. W.; MacMillan, D. W. C. J. Am. Chem. Soc. 2018, 140, 6522; (b) Bloom, S.; Liu, C.; K lmel, D. K.; Qiao, J.-X.; Zhang, Y.; Poss, M. A.; Ewing, W. R.; MacMillan, D. W. C. Nature Chem. 2018, 10, 205; (c) Zhao, Y.; Chen, J.-R.; Xiao, W.-J. Org. Lett. 2018, 20, 224; (d) Cheng, W.-M.; Shang, R.; Fu, M.-C.; Fu, Y. Chem. Eur. J. 2017, 23, 2537; (e) Wang, D.; Zhu, N.; Chen, P.; Lin, Z.; Liu, G. J. Am. Chem. Soc. 2017, 139, 15632; (f) Fawcett, A.; Pradeilles, J.; Wang, Y.; Mutsuga, T.; Myers, E. L.; Aggarwal, V. K. Science 2017, 357, 283; (g) Garza-Sanchez, R. A.; Tlahuext-Aca, A.; Tavakoli, G.; Glorius, F. ACS Catal. 2017, 7, 4057; (h) Cheng, W.-M.; Shang, R.; Fu, Y. ACS Catal. 2017, 7, 907; (i) McCarver, S. J.; Qiao, J.-X.; Carpenter, J.; Borzilleri, R. M.; Poss, M. A.; Eastgate, M. D.; Miller, M.; MacMillan, D. W. C. Angew. Chem., Int. Ed. 2017, 56, 728; (j) Johnston, C. P.; Smith, R.; Allmendinger, T. S.; MacMillan, D. W. C. Nature 2016, 536, 322; (k) Müller, D. S.; Untiedt, N. L.; Dieskau, A. P.; Lackner, G. L.; Overman, L. E. J. Am. Chem. Soc. 2015, 137, 660.

    4. [4]

      For selected recent examples, see: (a) Zhou, W.-J.; Cao, G.-M.; Shen, G.; Zhu, X.-Y.; Gui, Y.-Y.; Ye, J.-H.; Sun, L.; Liao, L.-L.; Li, J.; Yu, D.-G. Angew. Chem., Int. Ed. 2017, 56, 15683; (b) Nuhant, P.; Oderinde, M. S.; Genovino, J.; Juneau, A.; Gagné, Y.; Allais, C.; Chinigo, G. M.; Choi, C.; Sach, N. W.; Bernier, L.; Fobian, Y. M.; Bundesmann, M. W.; Khunte, B.; Frenette, M.; Fadeyi, O. O. Angew. Chem., Int. Ed. 2017, 56, 15309; (c) Zhang, P.; Le, C.; MacMillan, D. W. C. J. Am. Chem. Soc. 2016, 138, 8084; (d) Feng, Z.; Min, Q.-Q.; Zhao, H.-Y.; Gu, J.-W.; Zhang, X. Angew. Chem., Int. Ed. 2015, 54, 1270; (e) Iqbal, N.; Choi, S.; Kim, E.; Cho, E. J. J. Org. Chem. 2012, 77, 11383.

    5. [5]

      For selected recent examples, see: (a) Lima, F.; Sharma, U. K.; Grunenberg, L.; Saha, D.; Johannsen, S.; Sedelmeier, J.; Van der Eycken, E. V.; Ley, S. V. Angew. Chem., Int. Ed. 2017, 56, 15136; (b) Matsui, J. K.; Primer, D. N.; Molander, G. A. Chem. Sci. 2017, 8, 3512; (c) Amani, J.; Molander, G. A. Org. Lett. 2017, 19, 3612; (d) Primer, D. N.; Molander, G. A. J. Am. Chem. Soc. 2017, 139, 9847; (e) Lima, F.; Kabeshov, M. A.; Tran, D. N.; Battilocchio, C.; Sedelmeier, J.; Sedelmeier, G.; Schenkel, B.; Ley, S. V. Angew. Chem., Int. Ed. 2016, 55, 14085; (f) Huo, H.; Harms, K.; Meggers, E. J. Am. Chem. Soc. 2016, 138, 6936; (g) El Khatib, M.; Serafim, R. A. M.; Molander, G. A. Angew. Chem., Int. Ed. 2016, 55, 254; (h) Primer, D. N.; Karakaya, I.; Tellis, J. C.; Molander, G. A. J. Am. Chem. Soc. 2015, 137, 2195.

    6. [6]

      For selected recent examples, see: (a) Lang, S. B.; Wiles, R. J.; Kelly, C. B.; Molander, G. A. Angew. Chem., Int. Ed. 2017, 56, 15073; (b) Zheng, S.; Primer, D. N.; Molander, G. A. ACS Catal. 2017, 7, 7957; (c) Remeur, C.; Kelly, C. B.; Patel, N. R.; Molander, G. A. ACS Catal. 2017, 7, 6065; (d) Lin, K.; Wiles, R. J.; Kelly, C. B.; Davies, G. H. M.; Molander, G. A. ACS Catal. 2017, 7, 5129; (e) Patel, N. R.; Kelly, C. B.; Siegenfeld, A. P.; Molander, G. A. ACS Catal. 2017, 7, 1766; (f) Deng, Y.; Liu, Q. Smith, A. B. J. Am. Chem. Soc. 2017, 139, 9487; (g) Jouffroy, M.; Primer, D. N.; Molander, G. A. J. Am. Chem. Soc. 2016, 138, 475; (h) Corc, V.; Chamoreau, L.-M.; Derat, E.; Goddard, J.-P.; Ollivier, C.; Fen-sterbank, L. Angew. Chem., Int. Ed. 2015, 54, 11414.

    7. [7]

      For selected recent examples, see: (a) Slutskyy, Y.; Jamison, C. R.; Zhao, P.; Lee, J.; Rhee, Y. H.; Overman, L. E. J. Am. Chem. Soc. 2017, 139, 7192; (b) Zhang, X.; MacMillan, D. W. C. J. Am. Chem. Soc. 2016, 138, 13862; (c) Lackner, G. L.; Quasdorf, K. W.; Pratsch, G.; Overman, L. E. J. Org. Chem. 2015, 80, 6012; (d) Nawrat, C. C.; Jamison, C. R.; Slutskyy, Y.; MacMillan, D. W. C.; Overman, L. E. J. Am. Chem. Soc. 2015, 137, 11270.

    8. [8]

      The Generation of Aryl Radicals Can be Achieved via the Reductive Cleavage of C(sp2)-N Bonds of the Aryl Diazonium Salts, For a review, see: Ghosh, I.; Marzo, L.; Das, A.; Shaikh, R.; König, B. Acc. Chem. Res. 2016, 49, 1566.

    9. [9]

      (a) Eds.: Pollegioni, L.; Servi, S. Nonnatural Amino Acids: Methods and Protocols, Springer, New York, 2012, pp. 1~249; (b) Ager, D. J. Amino Acids, Peptides and Proteins in Organic Chemistry, Ed.: Hughes, A. B., Wiley-VCH, Weinheim, 2009, Vol. 1, pp. 495~526.

    10. [10]

      Katritzky, A. R.; Gruntz, U.; Kenny, D. H.; Rezende, M. C.; Sheikh, H. J. Chem. Soc. Perkin Trans. 1 1979, 430.

    11. [11]

      Ouyang, K.; Hao, W.; Zhang, W.-X.; Xi, Z. Chem. Rev. 2015, 115, 12045.  doi: 10.1021/acs.chemrev.5b00386

    12. [12]

      (a) Basch, C. H.; Liao, J.; Xu, J.; Piane, J. J.; Watson, M. P. J. Am. Chem. Soc. 2017, 139, 5313; (b) Liao, J.; Guan, W.; Boscoe, B. P.; Tucker, J. W.; Tomlin, J. W.; Garnsey, M. R.; Watson, M. P. Org. Lett. 2018, 20, 3030; (c) Guan, W.; Liao, J.; Watson, M. P. Synthesis 2018, 50, 3231.

    13. [13]

      Grimshaw, J.; Moore, S.; Grimshaw, J. T. Acta Chem. Scand. Ser. B 1983, 37, 485.

    14. [14]

      (a) Klauck, F. J. R.; James, M. J.; Glorius, F. Angew. Chem., Int. Ed. 2017, 56, 12336; (b) Klauck, F. J. R.; Yoon, H.; James, M. J.; Lautens, M.; Glorius, F. ACS Catal. 2019, 9, 236; (c) Sandfort, F.; Strieth-Kalthoff, F.; Klauck, F. J. R.; James, M. J.; Glorius, F. Chem. Eur. J. 2018, 24, 17210.

    15. [15]

      (a) Wu, J.-J.; He, L.; Noble, A.; Aggarwal, V. K. J. Am. Chem. Soc. 2018, 140, 10700; (b) Wu, J.-J.; Grant, P. S.; Li, X.-B.; Noble, A.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2019, 58, 10.1002/anie.201814452.

    16. [16]

      Hu, J.; Wang, G.; Li, S.; Shi, Z. Angew. Chem., Int. Ed. 2018, 57, 15227.  doi: 10.1002/anie.201809608

    17. [17]

      Ociepa, M.; Turkowska, J.; Gryko, D. ACS Catal. 2018, 8, 11362.  doi: 10.1021/acscatal.8b03437

    18. [18]

      (a) Zhu, Z.-F.; Zhang, M.-M.; Liu, F. Org. Biomol. Chem. 2019, 17, 1531; (b) Zhang, M.-M.; Liu, F. Org. Chem. Front. 2018, 5, 3443.

    19. [19]

      Brase, S.; Waegell, B.; de Meijere, A. Synthesis 1998, 2, 148.
       

    20. [20]

      Ikeda, Y.; Nakamura, T.; Yorimitsu, H.; Oshima, K. J. Am. Chem. Soc. 2002, 124, 6514.  doi: 10.1021/ja026296l

    21. [21]

      Tang, S.; Liu, K.; Liu, C.; Lei, A.-W. Chem. Soc. Rev. 2015, 44, 1070.  doi: 10.1039/C4CS00347K

    22. [22]

      For selected recent examples with aliphatic carboxylic acids, see: (a) Cao, H.; Jiang, H.; Feng, H.; Kwan, J. M. C.; Liu, X.; Wu, J. J. Am. Chem. Soc. 2018, 140, 16360; (b) Zhou, H.; Ge, L.; Song, J.; Jian, W.; Li, Y.; Li, C.; Bao, H. iScience 2018, 3, 255; (c) Wang, G.-Z.; Shang, R.; Fu, Y. Org. Lett. 2018, 20, 888; (d) Koy, M.; Sandfort, F.; Tlahuext-Aca, A.; Quach, L.; Daniliuc, C. G.; Glorius, F. Chem. Eur. J. 2018, 24, 4552; (e) Zhu, N.; Zhao, J.; Bao, H. Chem. Sci. 2017, 8, 2081.

    23. [23]

      For selected examples with alkyl halides, see: (a) Xiong, H.; Li, Y.; Qian, B.; Wei, R.; Van der Eycken, E. V.; Bao, H. Org. Lett., 2019, 21, 776; (b) Kurandina, D.; Rivas, M.; Radzhabov, M.; Gevorgyan, V. Org. Lett. 2018, 20, 357; (c) Wang, G.-Z.; Shang, R.; Cheng, W.-M.; Fu, Y. J. Am. Chem. Soc. 2017, 139, 18307; (d) Kurandina, D.; Parasram, M.; Gevorgyan, V. Angew. Chem., Int. Ed. 2017, 56, 14212; (e) Liu, W.; Li, L.; Chen, Z.; Li, C.-J. Org. Biomol. Chem. 2015, 13, 6170; (f) Weiss, M. E.; Kreis, L. M.; Lauber, A.; Carreira, E. M. Angew. Chem., Int. Ed. 2011, 50, 11125; (g) Affo, W. H.; Fujioka, T.; Ikeda, Y.; Nakamura, T.; Yorimitsu, H.; Oshima, K.; Imamura, Y.; Mizuta, T.; Miyoshi, K. J. Am. Chem. Soc. 2006, 128, 8068; (h) Na, Y. G.; Park, S. Y.; Han, S. B.; Han, H.; Ko, S. W.; Chang, S. J. Am. Chem. Soc. 2004, 126, 250.

    24. [24]

      (a) Liu, C.; Tang, S.; Liu, D.; Yuan, J.; Zheng, L.; Meng, L.; Lei, A.-W. Angew. Chem., Int. Ed. 2012, 51, 3638; (b) Nishikata, T.; Noda, Y.; Fujimoto, R.; Sakashita, T. J. Am. Chem. Soc. 2013, 135, 16372; (c) Liu, Q.; Yi, H.; Liu, J.; Yang, Y.-H.; Zhang, X.; Zeng, Z.-Q.; Lei, A.-W. Chem. Eur. J. 2013, 19, 5120.

    25. [25]

      Jiang, X.; Zhang, M.-M.; Xiong, W.; Lu, L.-Q.; Xiao, W.-J. Angew. Chem., Int. Ed. 2019, 58, 2402.  doi: 10.1002/anie.201813689

  • 加载中
    1. [1]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    2. [2]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    3. [3]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    4. [4]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    5. [5]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    6. [6]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    7. [7]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    8. [8]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    9. [9]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    10. [10]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    11. [11]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    12. [12]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    13. [13]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    14. [14]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    15. [15]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    16. [16]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    17. [17]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    18. [18]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    19. [19]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    20. [20]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

Metrics
  • PDF Downloads(27)
  • Abstract views(2120)
  • HTML views(576)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return