Citation: Peng Zhengkang, Ding Huimin, Chen Rufan, Gao Chao, Wang Cheng. Research Progress in Covalent Organic Frameworks for Energy Storage and Conversion[J]. Acta Chimica Sinica, ;2019, 77(8): 681-689. doi: 10.6023/A19040118 shu

Research Progress in Covalent Organic Frameworks for Energy Storage and Conversion

  • Corresponding author: Wang Cheng, chengwang@whu.edu.cn
  • Received Date: 7 April 2019
    Available Online: 20 August 2019

    Fund Project: the National Natural Science Foundation of China 21572170Project supported by the National Natural Science Foundation of China (No. 21572170)

Figures(6)

  • Covalent organic frameworks (COFs) are a class of porous crystalline materials consisting of organic units connected through covalent bonds. Due to their low density, high surface area and high thermal stability, COFs have found interesting applications in many fields, including molecular adsorption and separation, sensing, catalysis and optoelectronics devices. In particular, two-dimensional (2D) COFs have attracted increasing attention in energy fields. In this perspective, the applications of 2D COFs in energy storage (lithium ion batteries, lithium-sulfur batteries, supercapacitor and fuel cells) and energy conversion (water splitting and reduction of carbon dioxide) are reviewed. In addition, we will also discuss the remaining challenging issues.
  • 加载中
    1. [1]

      (a) Das, S.; Heasman, P.; Ben, T.; Qiu, S. Chem. Rev, 2017, 117, 1515. (b) Huang, N.; Wang, P.; Jiang, D. Nat. Rev. Mater. 2016, 1, 16068. (c) Waller, P. J.; Gandara, F.; Yaghi, O. M. Acc. Chem. Res. 2015, 48, 3053. (d) Ding, S. Y.; Wang, W. Chem. Soc. Rev. 2013, 42, 548.

    2. [2]

    3. [3]

    4. [4]

    5. [5]

      C té, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Science 2005, 310, 1166.  doi: 10.1126/science.1120411

    6. [6]

      (a) Zeng, Y.; Zou, R.; Zhao, Y. Adv. Mater. 2016, 28, 2855. (b) Kang, Z.; Peng, Y.; Qian, Y.; Yuan, D.; Addicoat, M. A.; Heine, T.; Hu, Z.; Tee, L.; Guo, Z.; Zhao, D. Chem. Mater. 2016, 28, 1277. (c) Song, J. R.; Sun, J.; Liu, J.; Huang, Z. T.; Zheng, Q. Y. Chem. Commun. 2014, 50, 788. (d) Zhou, T. Y.; Xu, S. Q.; Wen, Q.; Pang, Z. F.; Zhao, X. J. Am. Chem. Soc. 2014, 136, 15885.

    7. [7]

    8. [8]

      (a) Ding, S. Y.; Gao, J.; Wang, Q.; Zhang, Y.; Song, W. G.; Su, C. Y.; Wang, W. J. Am. Chem. Soc. 2011, 133, 19816. (b) Fang, Q.; Gu, S.; Zheng, J.; Zhuang, Z.; Qiu, S.; Yan, Y. Angew. Chem. Int. Ed. 2014, 53, 2878. (c) Lu, S.; Hu, Y.; Wan, S.; McCaffrey, R.; Jin, Y.; Gu, H.; Zhang, W. J. Am. Chem. Soc. 2017, 139, 17082. (d) Zhang, J.; Han, X.; Wu, X.; Liu, Y.; Cui, Y. J. Am. Chem. Soc. 2017, 139, 8277. (e) Wei, P. F.; Qi, M. Z.; Wang, Z. P.; Ding, S. Y.; Yu, W.; Liu, Q.; Wang, L. K.; Wang, H. Z.; An, W. K.; Wang, W. J. Am. Chem. Soc. 2018, 140, 4623. (f) Chen, R.; Shi, J. L.; Ma, Y.; Lin, G.; Lang, X.; Wang, C. Angew. Chem. Int. Ed. 2019, 58, 6430.

    9. [9]

      (a) Spitler, E. L.; Dichtel, W. R. Nat. Chem. 2010, 2, 672. (b) Ding, H.; Li, J.; Xie, G.; Lin, G.; Chen, R.; Peng, Z.; Yang, C.; Wang, B.; Sun, J.; Wang, C. Nat. Commun. 2018, 9, 5234. (c) Feng, X.; Liu, L.; Honsho, Y.; Saeki, A.; Seki, S.; Irle, S.; Dong, Y.; Nagai, A.; Jiang, D. Angew. Chem. Int. Ed. 2012, 51, 2618. (d) Sun, B.; Zhu, C.-H.; Liu, Y.; Wang, C.; Wan, L.-J.; Wang, D. Chem. Mater. 2017, 29, 4367. (e) Medina, D. D.; Sick, T.; Bein, T. Adv. Energy Mater. 2017, 7, 1700387.

    10. [10]

    11. [11]

      (a) Feng, X.; Chen, L.; Honsho, Y.; Saengsawang, O.; Liu, L.; Wang, L.; Saeki, A.; Irle, S.; Seki, S.; Dong, Y.; Jiang, D. Adv. Mater. 2012, 24, 3026. (b) Chen, X.; Addicoat, M.; Irle, S.; Nagai, A.; Jiang, D. J. Am. Chem. Soc. 2013, 135, 546. (c) Colson, J. W.; Dichtel, W. R. Nat. Chem. 2013, 5, 453. (d) Yang, L.; Wei, D.-C. Chin. Chem. Lett. 2016, 27, 1395.

    12. [12]

      (a) Lohse, M. S.; Stassin, T.; Naudin, G.; Wuttke, S.; Ameloot, R.; De Vos, D.; Medina, D. D.; Bein, T. Chem. Mater. 2016, 28, 626. (b) Waller, P. J.; Lyle, S. J.; Osborn Popp, T. M.; Diercks, C. S.; Reimer, J. A.; Yaghi, O. M. J. Am. Chem. Soc. 2016, 138, 15519. (c) Zhuang, X.; Zhao, W.; Zhang, F.; Cao, Y.; Liu, F.; Bi, S.; Feng, X. Polym. Chem. 2016, 7, 4176. (d) Jin, E.; Asada, M.; Xu, Q.; Dalapati, S.; Addicoat, M. A.; Brady, M. A.; Xu, H.; Nakamura, T.; Heine, T.; Chen, Q.; Jiang, D. Science 2017, 357, 673. (e) Li, X.; Zhang, C.; Cai, S.; Lei, X.; Altoe, V.; Hong, F.; Urban, J. J.; Ciston, J.; Chan, E. M.; Liu, Y. Nat. Commun. 2018, 9, 2998. (f) Han, X.; Huang, J.; Yuan, C.; Liu, Y.; Cui, Y. J. Am. Chem. Soc. 2018, 140, 892. (g) Zhang, B.; Wei, M.; Mao, H.; Pei, X.; Alshmimri, S. A.; Reimer, J. A.; Yaghi, O. M. J. Am. Chem. Soc. 2018, 140, 12715.

    13. [13]

      Chu, S.; Cui, Y.; Liu, N. Nat. Mater. 2016, 16, 16.

    14. [14]

      (a) Zhu, J.; Yang, D.; Yin, Z.; Yan, Q.; Zhang, H. Small 2014, 10, 3480. (b) Zhang, Q.; Uchaker, E.; Candelaria, S. L.; Cao, G. Chem. Soc. Rev. 2013, 42, 3127. (c) Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J.-M.; Schalkwijk, W. Nat. Mater. 2005, 4, 366.

    15. [15]

      Hu, L. H.; Wu, F. Y.; Lin, C. T.; Khlobystov, A. N.; Li, L. J. Nat. Commun. 2013, 4, 1687.  doi: 10.1038/ncomms2705

    16. [16]

      (a) Whittingham, M. S. Chem. Rev. 2004, 104, 4271. (b) Ellis, B. L.; Lee, K. T.; Nazar, L. F. Chem. Mater. 2010, 22, 691. (c) Goodenough, J. B.; Kim, Y. Chem. Mater. 2010, 22, 587.

    17. [17]

    18. [18]

      (a) Mike, J. F.; Lutkenhaus, J. L. ACS Macro Lett. 2013, 2, 839. (b) Yang, Y.; Wang, C.; Yue, B.; Gambhir, S.; Too, C. O.; Wallace, G. G. Adv. Energy Mater. 2012, 2, 266.

    19. [19]

      (a) Wu, H.; Shevlin, S. A.; Meng, Q.; Guo, W.; Meng, Y.; Lu, K.; Wei, Z.; Guo, Z. Adv. Mater. 2014, 26, 3338. (b) Song, Z.; Qian, Y.; Liu, X.; Zhang, T.; Zhu, Y.; Yu, H.; Otani, M.; Zhou, H. Energy Environ. Sci. 2014, 7, 4077. (c) Song, Z.; Zhan, H.; Zhou, Y. Angew. Chem. Int. Ed. 2010, 49, 8444. (d) Armand, M.; Grugeon, S.; Vezin, H.; Laruelle, S.; Ribiere, P.; Poizot, P.; Tarascon, J. M. Nat. Mater. 2009, 8, 120. (e) Chen, H.; Armand, M.; Courty, M.; Jiang, M.; Grey, C. P.; Dolhem, F.; Tarascon, J.-M.; Poizot, P. J. Am. Chem. Soc. 2009, 131, 8984.

    20. [20]

      (a) Zhan, L.; Song, Z.; Zhang, J.; Tang, J.; Zhan, H.; Zhou, Y.; Zhan, C. Electrochim. Acta 2008, 53, 8319. (b) Zhang, J. Y.; Kong, L. B.; Zhan, L. Z.; Tang, J.; Zhan, H.; Zhou, Y. H.; Zhan, C. M. J. Power Sources 2007, 168, 278.

    21. [21]

      (a) J hnert, T.; Hager, M. D.; Schubert, U. S. J. Mater. Chem. A 2014, 2, 15234. (b) Janoschka, T.; Hager, M. D.; Schubert, U. S. Adv. Mater. 2012, 24, 6397. (c) Nakahara, K.; Oyaizu, K.; Nishide, H. Chem. Lett. 2011, 40, 222. (d) Morita, Y.; Nishida, S.; Murata, T.; Moriguchi, M.; Ueda, A.; Satoh, M.; Arifuku, K.; Sato, K.; Takui, T. Nat. Mater. 2011, 10, 947.

    22. [22]

      Yang, D.-H.; Yao, Z.-Q.; Wu, D.; Zhang, Y.-H.; Zhou, Z.; Bu, X.-H. J. Mater. Chem. A 2016, 4, 18621  doi: 10.1039/C6TA07606H

    23. [23]

      Xu, F.; Jin, S.; Zhong, H.; Wu, D.; Yang, X.; Chen, X.; Wei, H.; Fu, R.; Jiang, D. Sci. Rep. 2015, 5, 8225.  doi: 10.1038/srep08225

    24. [24]

      Wang, S.; Wang, Q.; Shao, P.; Han, Y.; Gao, X.; Ma, L.; Yuan, S.; Ma, X.; Zhou, J.; Feng, X.; Wang, B. J. Am. Chem. Soc. 2017, 139, 4258.  doi: 10.1021/jacs.7b02648

    25. [25]

      Lei, Z.; Yang, Q.; Xu, Y.; Guo, S.; Sun, W.; Liu, H.; Lv, L. P.; Zhang, Y.; Wang, Y. Nat. Commun. 2018, 9, 576.  doi: 10.1038/s41467-018-02889-7

    26. [26]

      (a) Bachman, J. C.; Muy, S.; Grimaud, A.; Chang, H. H.; Pour, N.; Lux, S. F.; Paschos, O.; Maglia, F.; Lupart, S.; Lamp, P.; Giordano, L.; Shao-Horn, Y. Chem. Rev. 2016, 116, 140. (b) Thangadurai, V.; Narayanan, S.; Pinzaru, D. Chem. Soc. Rev. 2014, 43, 4714.

    27. [27]

      (a) Richards, W. D.; Miara, L. J.; Wang, Y.; Kim, J. C.; Ceder, G. Chem. Mater. 2015, 28, 266. (b) Xin, S.; You, Y.; Wang, S.; Gao, H.-C.; Yin, Y.-X.; Guo, Y.-G. ACS Energy Lett. 2017, 2, 1385. (c) Jeong, K.; Park, S.; Lee, S.-Y. J. Mater. Chem. A 2019, 7, 1917.

    28. [28]

      (a) Zhang, H.; Li, C.; Piszcz, M.; Coya, E.; Rojo, T.; Rodriguez-Martinez, L. M.; Armand, M.; Zhou, Z. Chem. Soc. Rev. 2017, 46, 797. (b) Bouchet, R.; Maria, S.; Meziane, R.; Aboulaich, A.; Lienafa, L.; Bonnet, J.-P.; Phan, T. N. T.; Bertin, D.; Gigmes, D.; Devaux, D.; Denoyel, R.; Armand, M. Nat. Mater. 2013, 12, 452.

    29. [29]

      Du, Y.; Yang, H.; Whiteley, J. M.; Wan, S.; Jin, Y.; Lee, S. H.; Zhang, W. Angew. Chem. Int. Ed. 2016, 55, 1737.  doi: 10.1002/anie.201509014

    30. [30]

      Chen, H.; Tu, H.; Hu, C.; Liu, Y.; Dong, D.; Sun, Y.; Dai, Y.; Wang, S.; Qian, H.; Lin, Z.; Chen, L. J. Am. Chem. Soc. 2018, 140, 896.  doi: 10.1021/jacs.7b12292

    31. [31]

      Guo, Z.; Zhang, Y.; Dong, Y.; Li, J.; Li, S.; Shao, P.; Feng, X.; Wang, B. J. Am. Chem. Soc. 2019, 141, 1923.  doi: 10.1021/jacs.8b13551

    32. [32]

      Xu, Q.; Tao, S.; Jiang, Q.; Jiang, D. J. Am. Chem. Soc. 2018, 140, 7429.  doi: 10.1021/jacs.8b03814

    33. [33]

      Zhang, G.; Hong, Y. L.; Nishiyama, Y.; Bai, S.; Kitagawa, S.; Horike, S. J. Am. Chem. Soc. 2019, 141, 1227.  doi: 10.1021/jacs.8b07670

    34. [34]

      (a) Liu, X.; Huang, J. Q.; Zhang, Q.; Mai, L. Adv. Mater. 2017, 29, 1601759. (b) Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Nat. Mater. 2011, 11, 19. (c) Pang, Q.; Liang, X.; Kwok, C. Y.; Nazar, L.F. Nat. Energy 2016, 1, 16132.

    35. [35]

      (a) Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Angew. Chem. Int. Ed. 2013, 52, 13186. (b) Ji, X.; Lee, K. T.; Nazar, L. F. Nat. Mater. 2009, 8, 500. (c) Zhao, Y.; Wu, W.; Li, J.; Xu, Z.; Guan, L. Adv. Mater. 2014, 27, 1694. (d) Cheng, Z.; Pan, H.; Zhong, H.; Xiao, Z.; Li, X.; Wang, R. Adv. Funct. Mater. 2018, 28, 1707597.

    36. [36]

      (a) Song, J.; Gordin, M. L.; Xu, T.; Chen, S.; Yu, Z.; Sohn, H.; Lu, J.; Ren, Y.; Duan, Y.; Wang, D. Angew. Chem. Int. Ed. 2015, 54, 4325. (b) Yang, C. P.; Yin, Y. X.; Ye, H.; Jiang, K. C.; Zhang, J.; Guo, Y. G. ACS Appl. Mater. Interfaces 2014, 6, 8789.

    37. [37]

      Liao, H.; Ding, H.; Li, B.; Ai, X.; Wang, C. J. Mater. Chem. A 2014, 2, 8854.  doi: 10.1039/C4TA00523F

    38. [38]

      Liao, H.; Wang, H.; Ding, H.; Meng, X.; Xu, H.; Wang, B.; Ai, X.; Wang, C. J. Mater. Chem. A 2016, 4, 7416.  doi: 10.1039/C6TA00483K

    39. [39]

      Meng, Y.; Lin, G.; Ding, H.; Liao, H.; Wang, C. J. Mater. Chem. A 2018, 6, 17186.  doi: 10.1039/C8TA05508D

    40. [40]

      Xu, F.; Yang, S.; Jiang, G.; Ye, Q.; Wei, B.; Wang, H. ACS Appl. Mater. Interfaces 2017, 9, 37731.  doi: 10.1021/acsami.7b10991

    41. [41]

      (a) Mclntosh, S.; Gorte, R. J. Chem. Rev. 2004, 104, 4845. (b) Winter, M.; Brodd, R. J. Chem. Rev. 2004, 104, 4245.

    42. [42]

      (a) Schmidt-Rohr, K.; Chen, Q. Nat. Mater. 2008, 7, 75. (b) Mauritz, K. A. Chem. Rev. 2004, 104, 4535. (c) Kreuer, K.-D.; Paddison, S. J.; Spohr, E.; Schuster, M. Chem. Rev. 2004, 104, 4637.

    43. [43]

      (a) Devanathan, R. Energy Environ. Sci. 2008, 1, 101. (b) Peckham, T. J.; Holdcroft, S. Adv. Mater. 2010, 22, 4667.

    44. [44]

      (a) Rikukawa, M.; Sanui, K. Prog. Polym. Sci. 2000, 25, 1463. (b) Paddison, S. J. Annu. Rev. Mater. Res. 2003, 33, 289.

    45. [45]

      (a) Horike, S.; Umeyama, D.; Kitagawa, S. Acc. Chem. Res. 2013, 46, 2376. (b) Hurd, J. A.; Vaidhyanathan, R.; Thangadurai, V.; Ratcliffe, C. I.; Moudrakovski, I. L.; Shimizu, G. K. Nat. Chem. 2009, 1, 705. (c) Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. Science 2013, 341, 1230444.

    46. [46]

      Chandra, S.; Kundu, T.; Kandambeth, S.; Babarao, R.; Marathe, Y.; Kunjir, S. M.; Banerjee, R. J. Am. Chem. Soc. 2014, 136, 6570.  doi: 10.1021/ja502212v

    47. [47]

      Xu, H.; Tao, S.; Jiang, D. Nat. Chem. 2016, 15, 722.

    48. [48]

      Chandra, S.; Kundu, T.; Dey, K.; Addicoat, M.; Heine, T.; Banerjee, R. Chem. Mater. 2016, 28, 1489.  doi: 10.1021/acs.chemmater.5b04947

    49. [49]

      Sasmal, H. S.; Aiyappa, H. B.; Bhange, S. N.; Karak, S.; Halder, A.; Kurungot, S.; Banerjee, R. Angew. Chem. Int. Ed. 2018, 57, 108.

    50. [50]

      Chen, X.; Paul, R.; Dai, L. Natl. Sci. Rev. 2017, 4, 453.  doi: 10.1093/nsr/nwx009

    51. [51]

      Li, X.; Wei, B. Nano Energy 2013, 2, 159.  doi: 10.1016/j.nanoen.2012.09.008

    52. [52]

      Wang, Y.; Song, Y.; Xia, Y. Chem. Soc. Rev. 2016, 45, 5925.  doi: 10.1039/C5CS00580A

    53. [53]

      DeBlase, C. R.; Silberstein, K. E.; Truong, T. T.; Abruna, H. D.; Dichtel, W. R. J. Am. Chem. Soc. 2013, 135, 16821  doi: 10.1021/ja409421d

    54. [54]

      DeBlase, C. R.; Hernandez-Burgos, K.; Silberstein, K. E.; Rodrıguez-Calero, G. G.; Bisbey, R. P.; Abruña, H. D.; Dichtel, W. R. ACS Nano 2015, 9, 3178.  doi: 10.1021/acsnano.5b00184

    55. [55]

      Mulzer, C. R.; Shen, L; Bisbey, R. P.; McKone, J. R.; Zhang, N.; Abruña, H. D.; Dichtel, W. R. ACS Cent. Sci. 2016, 2, 667.  doi: 10.1021/acscentsci.6b00220

    56. [56]

      Xu, F.; Xu, H.; Chen, X.; Wu, D.; Wu, Y.; Liu, H.; Gu, C.; Fu, R.; Jiang, D. Angew. Chem. Int. Ed. 2015, 54, 6814.  doi: 10.1002/anie.201501706

    57. [57]

      Chandra, S.; Roy Chowdhury, D.; Addicoat, M.; Heine, T.; Paul, A.; Banerjee, R. Chem. Mater. 2017, 29, 2074.  doi: 10.1021/acs.chemmater.6b04178

    58. [58]

      Stamenkovic, V. R.; Strmcnik, D.; Lopes, P. P.; Markovic, N. M. Nat. Mater. 2016, 16, 57.

    59. [59]

      Stamenkovic, V. R.; Strmcnik, D.; Lopes, P. P.; Markovic, N. M. Nat. Mater. 2016, 16, 57.

    60. [60]

      Fujishima, A.; Honda, K. Nature 1972, 238, 37.  doi: 10.1038/238037a0

    61. [61]

      (a) Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253. (b) Chen, S.; Takata, T.; Domen, K. Nat. Rev. Mater. 2017, 2, 17050.

    62. [62]

      (a) Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. Nat. Mater. 2009, 8, 76. (b) Schwinghammer, K.; Mesch, M. B.; Duppel, V.; Ziegler, C.; Senker, J.; Lotsch, B. V. J. Am. Chem. Soc. 2014, 136, 1730.

    63. [63]

      (a) Sprick, R. S.; Jiang, J. X.; Bonillo, B.; Ren, S.; Ratvijitvech, T.; Guiglion, P.; Zwijnenburg, M. A.; Adams, D. J.; Cooper, A. I. J. Am. Chem. Soc. 2015, 137, 3265. (b) Li, L.; Cai, Z.; Wu, Q.; Lo, W. Y.; Zhang, N.; Chen, L. X.; Yu, L. J. Am. Chem. Soc. 2016, 138, 7681. (c) Yang, C.; Ma, B. C.; Zhang, L.; Lin, S.; Ghasimi, S.; Landfester, K.; Zhang, K. A.; Wang, X. Angew. Chem. Int. Ed. 2016, 55, 9202.

    64. [64]

      (a) Woods, D. J.; Sprick, R. S.; Smith, C. L.; Cowan, A. J.; Cooper, A. I. Adv. Energy Mater. 2017, 7, 1700479. (b) Sprick, R. S.; Bonillo, B.; Clowes, R.; Guiglion, P.; Brownbill, N. J.; Slater, B. J.; Blanc, F.; Zwijnenburg, M. A.; Adams, D. J.; Cooper, A. I. Angew. Chem. Int. Ed. 2016, 55, 1792.

    65. [65]

      Stegbauer, L.; Schwinghammer, K.; Lotsch, B. V. Chem. Sci. 2014, 5, 2789.  doi: 10.1039/C4SC00016A

    66. [66]

      Vyas, V. S.; Haase, F.; Stegbauer, L.; Savasci, G.; Podjaski, F.; Ochsenfeld, C.; Lotsch, B. V. Nat. Commun. 2015, 6, 8508.  doi: 10.1038/ncomms9508

    67. [67]

      Pachfule, P.; Acharjya, A.; Roeser, J.; Langenhahn, T.; Schwarze, M.; Schomacker, R.; Thomas, A.; Schmidt, J. J. Am. Chem. Soc. 2018, 140, 1423.  doi: 10.1021/jacs.7b11255

    68. [68]

      Wang, X.; Chen, L.; Chong, S. Y.; Little, M. A.; Wu, Y.; Zhu, W. H.; Clowes, R.; Yan, Y.; Zwijnenburg, M. A.; Sprick, R. S.; Cooper, A. I. Nat. Chem. 2018, 10, 1180.  doi: 10.1038/s41557-018-0141-5

    69. [69]

      Berardi, S.; Drouet, S.; Francàs, L.; Gimbert-Suri ach, C.; Guttentag, M.; Richmond, C.; Stoll, T.; Llobet, A. Chem. Soc. Rev. 2014, 43, 7501.  doi: 10.1039/C3CS60405E

    70. [70]

      (a) Reier, T.; Oezaslan, M.; Strasser, P. ACS Catal. 2012, 2, 1765. (b) Sardar, K.; Petrucco, E.; Hiley, C. I.; Sharman, J. D.; Wells, P. P.; Russell, A. E.; Kashtiban, R. J.; Sloan, J.; Walton, R. I. Angew. Chem. Int. Ed. 2014, 53, 10960.

    71. [71]

      (a) Chang, J.; Xiao, Y.; Xiao, M.; Ge, J.; Liu, C.; Xing, W. ACS Catal. 2015, 5, 6874. (b) Zhang, C.; Antonietti, M.; Fellinger, T.-P. Adv. Funct. Mater. 2014, 24, 7655. (c) Wu, L.; Li, Q.; Wu, C. H.; Zhu, H.; Mendoza-Garcia, A.; Shen, B.; Guo, J.; Sun, S. J. Am. Chem. Soc. 2015, 137, 7071. (d) Zhang, G.; Huang, C.; Wang, X. Small, 2015, 11, 1215.

    72. [72]

      Blakemore, J. D.; Crabtree, R. H.; Brudvig, G. W. Chem. Rev. 2015, 115, 12974.  doi: 10.1021/acs.chemrev.5b00122

    73. [73]

      Aiyappa, H. B.; Thote, J.; Shinde, D. B.; Banerjee, R.; Kurungot, S. Chem. Mater. 2016, 28, 4375.  doi: 10.1021/acs.chemmater.6b01370

    74. [74]

      Mullangi, D.; Dhavale, V.; Shalini, S.; Nandi, S.; Collins, S.; Woo, T.; Kurungot, S.; Vaidhyanathan, R. Adv. Energy Mater. 2016, 6, 1600110.  doi: 10.1002/aenm.201600110

    75. [75]

      Nandi, S.; Singh, S. K.; Mullangi, D.; Illathvalappil, R.; George, L.; Vinod, C. P.; Kurungot, S.; Vaidhyanathan, R. Adv. Energy Mater. 2016, 6, 1601189.  doi: 10.1002/aenm.201601189

    76. [76]

      (a) Lewis, N. S.; Nocera, D. G. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 15729. (b) Gray, H. B. Nat. Chem. 2009, 1, 7.

    77. [77]

      (a) Zhao, G.; Huang, X.; Wang, X.; Wang, X. J. Mater. Chem. A 2017, 5, 21625. (b) Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K. Angew. Chem. Int. Ed. 2013, 52, 7372. (c) Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Nature 1979, 277, 637. (d) Thampi, K. R.; Kiwi, J.; Gr tzel, M. Nature 1987, 327, 506. (e) Tu, W.; Zhou, Y.; Zou, Z. Adv. Mater. 2014, 26, 4607.

    78. [78]

      (a) Lin, W.; Frei, H. J. Am. Chem. Soc. 2005, 127, 1610. (b) Anpo, M.; Takeuchi, M. J. Catal. 2003, 216, 505. (c) Shioya, Y.; Ikeue, K.; Ogawa, M.; Anpo, M. Appl. Catal. A: General 2003, 254, 251. (d) Matsuoka, M.; Anpo, M. J. Photochem. Photobiol. C: Photochem. Rev. 2003, 3, 225. (e) Anpo, M.; Yamashita, H.; Ikeue, K.; Fujii, Y.; Zhang, S. G.; Ichihashi, Y.; Park, D. R.; Suzuki, Y.; Koyano, K.; Tatsumi, T. Catal. Today 1998, 44, 327. (f) Anpo, M. J. CO2 Util. 2013, 1, 8. (g) Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D. W. Chem. Rev. 2014, 114, 9919.

    79. [79]

      Yang, S.; Hu, W.; Zhang, X.; He, P.; Pattengale, B.; Liu, C.; Cendejas, M.; Hermans, I.; Zhang, X.; Zhang, J.; Huang, J. J. Am. Chem. Soc. 2018, 140, 14614.  doi: 10.1021/jacs.8b09705

    80. [80]

      Lin, S.; Diercks, C. S.; Zhang, Y.-B.; Kornienko, N.; Nichols, E. M.; Zhao, Y.; Paris, A. R.; Kim, D.; Yang, P.; Yaghi, O. M.; Chang, C. J. Science 2015, 349, 1208.  doi: 10.1126/science.aac8343

    81. [81]

      Diercks, C. S.; Lin, S.; Kornienko, N.; Kapustin, E. A.; Nichols, E. M.; Zhu, C.; Zhao, Y.; Chang, C. J.; Yaghi, O. M. J. Am. Chem. Soc. 2018, 140, 1116.  doi: 10.1021/jacs.7b11940

  • 加载中
    1. [1]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    2. [2]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    3. [3]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    4. [4]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    5. [5]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    6. [6]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    7. [7]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    8. [8]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    9. [9]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    12. [12]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    13. [13]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    14. [14]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    15. [15]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    16. [16]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    17. [17]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    18. [18]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    19. [19]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    20. [20]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

Metrics
  • PDF Downloads(59)
  • Abstract views(2130)
  • HTML views(508)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return