Research Progress in Covalent Organic Frameworks for Energy Storage and Conversion
- Corresponding author: Wang Cheng, chengwang@whu.edu.cn
Citation: Peng Zhengkang, Ding Huimin, Chen Rufan, Gao Chao, Wang Cheng. Research Progress in Covalent Organic Frameworks for Energy Storage and Conversion[J]. Acta Chimica Sinica, ;2019, 77(8): 681-689. doi: 10.6023/A19040118
(a) Das, S.; Heasman, P.; Ben, T.; Qiu, S. Chem. Rev, 2017, 117, 1515. (b) Huang, N.; Wang, P.; Jiang, D. Nat. Rev. Mater. 2016, 1, 16068. (c) Waller, P. J.; Gandara, F.; Yaghi, O. M. Acc. Chem. Res. 2015, 48, 3053. (d) Ding, S. Y.; Wang, W. Chem. Soc. Rev. 2013, 42, 548.
C té, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Science 2005, 310, 1166.
doi: 10.1126/science.1120411
(a) Zeng, Y.; Zou, R.; Zhao, Y. Adv. Mater. 2016, 28, 2855. (b) Kang, Z.; Peng, Y.; Qian, Y.; Yuan, D.; Addicoat, M. A.; Heine, T.; Hu, Z.; Tee, L.; Guo, Z.; Zhao, D. Chem. Mater. 2016, 28, 1277. (c) Song, J. R.; Sun, J.; Liu, J.; Huang, Z. T.; Zheng, Q. Y. Chem. Commun. 2014, 50, 788. (d) Zhou, T. Y.; Xu, S. Q.; Wen, Q.; Pang, Z. F.; Zhao, X. J. Am. Chem. Soc. 2014, 136, 15885.
(a) Ding, S. Y.; Gao, J.; Wang, Q.; Zhang, Y.; Song, W. G.; Su, C. Y.; Wang, W. J. Am. Chem. Soc. 2011, 133, 19816. (b) Fang, Q.; Gu, S.; Zheng, J.; Zhuang, Z.; Qiu, S.; Yan, Y. Angew. Chem. Int. Ed. 2014, 53, 2878. (c) Lu, S.; Hu, Y.; Wan, S.; McCaffrey, R.; Jin, Y.; Gu, H.; Zhang, W. J. Am. Chem. Soc. 2017, 139, 17082. (d) Zhang, J.; Han, X.; Wu, X.; Liu, Y.; Cui, Y. J. Am. Chem. Soc. 2017, 139, 8277. (e) Wei, P. F.; Qi, M. Z.; Wang, Z. P.; Ding, S. Y.; Yu, W.; Liu, Q.; Wang, L. K.; Wang, H. Z.; An, W. K.; Wang, W. J. Am. Chem. Soc. 2018, 140, 4623. (f) Chen, R.; Shi, J. L.; Ma, Y.; Lin, G.; Lang, X.; Wang, C. Angew. Chem. Int. Ed. 2019, 58, 6430.
(a) Spitler, E. L.; Dichtel, W. R. Nat. Chem. 2010, 2, 672. (b) Ding, H.; Li, J.; Xie, G.; Lin, G.; Chen, R.; Peng, Z.; Yang, C.; Wang, B.; Sun, J.; Wang, C. Nat. Commun. 2018, 9, 5234. (c) Feng, X.; Liu, L.; Honsho, Y.; Saeki, A.; Seki, S.; Irle, S.; Dong, Y.; Nagai, A.; Jiang, D. Angew. Chem. Int. Ed. 2012, 51, 2618. (d) Sun, B.; Zhu, C.-H.; Liu, Y.; Wang, C.; Wan, L.-J.; Wang, D. Chem. Mater. 2017, 29, 4367. (e) Medina, D. D.; Sick, T.; Bein, T. Adv. Energy Mater. 2017, 7, 1700387.
(a) Feng, X.; Chen, L.; Honsho, Y.; Saengsawang, O.; Liu, L.; Wang, L.; Saeki, A.; Irle, S.; Seki, S.; Dong, Y.; Jiang, D. Adv. Mater. 2012, 24, 3026. (b) Chen, X.; Addicoat, M.; Irle, S.; Nagai, A.; Jiang, D. J. Am. Chem. Soc. 2013, 135, 546. (c) Colson, J. W.; Dichtel, W. R. Nat. Chem. 2013, 5, 453. (d) Yang, L.; Wei, D.-C. Chin. Chem. Lett. 2016, 27, 1395.
(a) Lohse, M. S.; Stassin, T.; Naudin, G.; Wuttke, S.; Ameloot, R.; De Vos, D.; Medina, D. D.; Bein, T. Chem. Mater. 2016, 28, 626. (b) Waller, P. J.; Lyle, S. J.; Osborn Popp, T. M.; Diercks, C. S.; Reimer, J. A.; Yaghi, O. M. J. Am. Chem. Soc. 2016, 138, 15519. (c) Zhuang, X.; Zhao, W.; Zhang, F.; Cao, Y.; Liu, F.; Bi, S.; Feng, X. Polym. Chem. 2016, 7, 4176. (d) Jin, E.; Asada, M.; Xu, Q.; Dalapati, S.; Addicoat, M. A.; Brady, M. A.; Xu, H.; Nakamura, T.; Heine, T.; Chen, Q.; Jiang, D. Science 2017, 357, 673. (e) Li, X.; Zhang, C.; Cai, S.; Lei, X.; Altoe, V.; Hong, F.; Urban, J. J.; Ciston, J.; Chan, E. M.; Liu, Y. Nat. Commun. 2018, 9, 2998. (f) Han, X.; Huang, J.; Yuan, C.; Liu, Y.; Cui, Y. J. Am. Chem. Soc. 2018, 140, 892. (g) Zhang, B.; Wei, M.; Mao, H.; Pei, X.; Alshmimri, S. A.; Reimer, J. A.; Yaghi, O. M. J. Am. Chem. Soc. 2018, 140, 12715.
Chu, S.; Cui, Y.; Liu, N. Nat. Mater. 2016, 16, 16.
(a) Zhu, J.; Yang, D.; Yin, Z.; Yan, Q.; Zhang, H. Small 2014, 10, 3480. (b) Zhang, Q.; Uchaker, E.; Candelaria, S. L.; Cao, G. Chem. Soc. Rev. 2013, 42, 3127. (c) Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J.-M.; Schalkwijk, W. Nat. Mater. 2005, 4, 366.
Hu, L. H.; Wu, F. Y.; Lin, C. T.; Khlobystov, A. N.; Li, L. J. Nat. Commun. 2013, 4, 1687.
doi: 10.1038/ncomms2705
(a) Whittingham, M. S. Chem. Rev. 2004, 104, 4271. (b) Ellis, B. L.; Lee, K. T.; Nazar, L. F. Chem. Mater. 2010, 22, 691. (c) Goodenough, J. B.; Kim, Y. Chem. Mater. 2010, 22, 587.
(a) Mike, J. F.; Lutkenhaus, J. L. ACS Macro Lett. 2013, 2, 839. (b) Yang, Y.; Wang, C.; Yue, B.; Gambhir, S.; Too, C. O.; Wallace, G. G. Adv. Energy Mater. 2012, 2, 266.
(a) Wu, H.; Shevlin, S. A.; Meng, Q.; Guo, W.; Meng, Y.; Lu, K.; Wei, Z.; Guo, Z. Adv. Mater. 2014, 26, 3338. (b) Song, Z.; Qian, Y.; Liu, X.; Zhang, T.; Zhu, Y.; Yu, H.; Otani, M.; Zhou, H. Energy Environ. Sci. 2014, 7, 4077. (c) Song, Z.; Zhan, H.; Zhou, Y. Angew. Chem. Int. Ed. 2010, 49, 8444. (d) Armand, M.; Grugeon, S.; Vezin, H.; Laruelle, S.; Ribiere, P.; Poizot, P.; Tarascon, J. M. Nat. Mater. 2009, 8, 120. (e) Chen, H.; Armand, M.; Courty, M.; Jiang, M.; Grey, C. P.; Dolhem, F.; Tarascon, J.-M.; Poizot, P. J. Am. Chem. Soc. 2009, 131, 8984.
(a) Zhan, L.; Song, Z.; Zhang, J.; Tang, J.; Zhan, H.; Zhou, Y.; Zhan, C. Electrochim. Acta 2008, 53, 8319. (b) Zhang, J. Y.; Kong, L. B.; Zhan, L. Z.; Tang, J.; Zhan, H.; Zhou, Y. H.; Zhan, C. M. J. Power Sources 2007, 168, 278.
(a) J hnert, T.; Hager, M. D.; Schubert, U. S. J. Mater. Chem. A 2014, 2, 15234. (b) Janoschka, T.; Hager, M. D.; Schubert, U. S. Adv. Mater. 2012, 24, 6397. (c) Nakahara, K.; Oyaizu, K.; Nishide, H. Chem. Lett. 2011, 40, 222. (d) Morita, Y.; Nishida, S.; Murata, T.; Moriguchi, M.; Ueda, A.; Satoh, M.; Arifuku, K.; Sato, K.; Takui, T. Nat. Mater. 2011, 10, 947.
Yang, D.-H.; Yao, Z.-Q.; Wu, D.; Zhang, Y.-H.; Zhou, Z.; Bu, X.-H. J. Mater. Chem. A 2016, 4, 18621
doi: 10.1039/C6TA07606H
Xu, F.; Jin, S.; Zhong, H.; Wu, D.; Yang, X.; Chen, X.; Wei, H.; Fu, R.; Jiang, D. Sci. Rep. 2015, 5, 8225.
doi: 10.1038/srep08225
Wang, S.; Wang, Q.; Shao, P.; Han, Y.; Gao, X.; Ma, L.; Yuan, S.; Ma, X.; Zhou, J.; Feng, X.; Wang, B. J. Am. Chem. Soc. 2017, 139, 4258.
doi: 10.1021/jacs.7b02648
Lei, Z.; Yang, Q.; Xu, Y.; Guo, S.; Sun, W.; Liu, H.; Lv, L. P.; Zhang, Y.; Wang, Y. Nat. Commun. 2018, 9, 576.
doi: 10.1038/s41467-018-02889-7
(a) Bachman, J. C.; Muy, S.; Grimaud, A.; Chang, H. H.; Pour, N.; Lux, S. F.; Paschos, O.; Maglia, F.; Lupart, S.; Lamp, P.; Giordano, L.; Shao-Horn, Y. Chem. Rev. 2016, 116, 140. (b) Thangadurai, V.; Narayanan, S.; Pinzaru, D. Chem. Soc. Rev. 2014, 43, 4714.
(a) Richards, W. D.; Miara, L. J.; Wang, Y.; Kim, J. C.; Ceder, G. Chem. Mater. 2015, 28, 266. (b) Xin, S.; You, Y.; Wang, S.; Gao, H.-C.; Yin, Y.-X.; Guo, Y.-G. ACS Energy Lett. 2017, 2, 1385. (c) Jeong, K.; Park, S.; Lee, S.-Y. J. Mater. Chem. A 2019, 7, 1917.
(a) Zhang, H.; Li, C.; Piszcz, M.; Coya, E.; Rojo, T.; Rodriguez-Martinez, L. M.; Armand, M.; Zhou, Z. Chem. Soc. Rev. 2017, 46, 797. (b) Bouchet, R.; Maria, S.; Meziane, R.; Aboulaich, A.; Lienafa, L.; Bonnet, J.-P.; Phan, T. N. T.; Bertin, D.; Gigmes, D.; Devaux, D.; Denoyel, R.; Armand, M. Nat. Mater. 2013, 12, 452.
Du, Y.; Yang, H.; Whiteley, J. M.; Wan, S.; Jin, Y.; Lee, S. H.; Zhang, W. Angew. Chem. Int. Ed. 2016, 55, 1737.
doi: 10.1002/anie.201509014
Chen, H.; Tu, H.; Hu, C.; Liu, Y.; Dong, D.; Sun, Y.; Dai, Y.; Wang, S.; Qian, H.; Lin, Z.; Chen, L. J. Am. Chem. Soc. 2018, 140, 896.
doi: 10.1021/jacs.7b12292
Guo, Z.; Zhang, Y.; Dong, Y.; Li, J.; Li, S.; Shao, P.; Feng, X.; Wang, B. J. Am. Chem. Soc. 2019, 141, 1923.
doi: 10.1021/jacs.8b13551
Xu, Q.; Tao, S.; Jiang, Q.; Jiang, D. J. Am. Chem. Soc. 2018, 140, 7429.
doi: 10.1021/jacs.8b03814
Zhang, G.; Hong, Y. L.; Nishiyama, Y.; Bai, S.; Kitagawa, S.; Horike, S. J. Am. Chem. Soc. 2019, 141, 1227.
doi: 10.1021/jacs.8b07670
(a) Liu, X.; Huang, J. Q.; Zhang, Q.; Mai, L. Adv. Mater. 2017, 29, 1601759. (b) Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Nat. Mater. 2011, 11, 19. (c) Pang, Q.; Liang, X.; Kwok, C. Y.; Nazar, L.F. Nat. Energy 2016, 1, 16132.
(a) Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Angew. Chem. Int. Ed. 2013, 52, 13186. (b) Ji, X.; Lee, K. T.; Nazar, L. F. Nat. Mater. 2009, 8, 500. (c) Zhao, Y.; Wu, W.; Li, J.; Xu, Z.; Guan, L. Adv. Mater. 2014, 27, 1694. (d) Cheng, Z.; Pan, H.; Zhong, H.; Xiao, Z.; Li, X.; Wang, R. Adv. Funct. Mater. 2018, 28, 1707597.
(a) Song, J.; Gordin, M. L.; Xu, T.; Chen, S.; Yu, Z.; Sohn, H.; Lu, J.; Ren, Y.; Duan, Y.; Wang, D. Angew. Chem. Int. Ed. 2015, 54, 4325. (b) Yang, C. P.; Yin, Y. X.; Ye, H.; Jiang, K. C.; Zhang, J.; Guo, Y. G. ACS Appl. Mater. Interfaces 2014, 6, 8789.
Liao, H.; Ding, H.; Li, B.; Ai, X.; Wang, C. J. Mater. Chem. A 2014, 2, 8854.
doi: 10.1039/C4TA00523F
Liao, H.; Wang, H.; Ding, H.; Meng, X.; Xu, H.; Wang, B.; Ai, X.; Wang, C. J. Mater. Chem. A 2016, 4, 7416.
doi: 10.1039/C6TA00483K
Meng, Y.; Lin, G.; Ding, H.; Liao, H.; Wang, C. J. Mater. Chem. A 2018, 6, 17186.
doi: 10.1039/C8TA05508D
Xu, F.; Yang, S.; Jiang, G.; Ye, Q.; Wei, B.; Wang, H. ACS Appl. Mater. Interfaces 2017, 9, 37731.
doi: 10.1021/acsami.7b10991
(a) Mclntosh, S.; Gorte, R. J. Chem. Rev. 2004, 104, 4845. (b) Winter, M.; Brodd, R. J. Chem. Rev. 2004, 104, 4245.
(a) Schmidt-Rohr, K.; Chen, Q. Nat. Mater. 2008, 7, 75. (b) Mauritz, K. A. Chem. Rev. 2004, 104, 4535. (c) Kreuer, K.-D.; Paddison, S. J.; Spohr, E.; Schuster, M. Chem. Rev. 2004, 104, 4637.
(a) Devanathan, R. Energy Environ. Sci. 2008, 1, 101. (b) Peckham, T. J.; Holdcroft, S. Adv. Mater. 2010, 22, 4667.
(a) Rikukawa, M.; Sanui, K. Prog. Polym. Sci. 2000, 25, 1463. (b) Paddison, S. J. Annu. Rev. Mater. Res. 2003, 33, 289.
(a) Horike, S.; Umeyama, D.; Kitagawa, S. Acc. Chem. Res. 2013, 46, 2376. (b) Hurd, J. A.; Vaidhyanathan, R.; Thangadurai, V.; Ratcliffe, C. I.; Moudrakovski, I. L.; Shimizu, G. K. Nat. Chem. 2009, 1, 705. (c) Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. Science 2013, 341, 1230444.
Chandra, S.; Kundu, T.; Kandambeth, S.; Babarao, R.; Marathe, Y.; Kunjir, S. M.; Banerjee, R. J. Am. Chem. Soc. 2014, 136, 6570.
doi: 10.1021/ja502212v
Xu, H.; Tao, S.; Jiang, D. Nat. Chem. 2016, 15, 722.
Chandra, S.; Kundu, T.; Dey, K.; Addicoat, M.; Heine, T.; Banerjee, R. Chem. Mater. 2016, 28, 1489.
doi: 10.1021/acs.chemmater.5b04947
Sasmal, H. S.; Aiyappa, H. B.; Bhange, S. N.; Karak, S.; Halder, A.; Kurungot, S.; Banerjee, R. Angew. Chem. Int. Ed. 2018, 57, 108.
Chen, X.; Paul, R.; Dai, L. Natl. Sci. Rev. 2017, 4, 453.
doi: 10.1093/nsr/nwx009
Li, X.; Wei, B. Nano Energy 2013, 2, 159.
doi: 10.1016/j.nanoen.2012.09.008
Wang, Y.; Song, Y.; Xia, Y. Chem. Soc. Rev. 2016, 45, 5925.
doi: 10.1039/C5CS00580A
DeBlase, C. R.; Silberstein, K. E.; Truong, T. T.; Abruna, H. D.; Dichtel, W. R. J. Am. Chem. Soc. 2013, 135, 16821
doi: 10.1021/ja409421d
DeBlase, C. R.; Hernandez-Burgos, K.; Silberstein, K. E.; Rodrıguez-Calero, G. G.; Bisbey, R. P.; Abruña, H. D.; Dichtel, W. R. ACS Nano 2015, 9, 3178.
doi: 10.1021/acsnano.5b00184
Mulzer, C. R.; Shen, L; Bisbey, R. P.; McKone, J. R.; Zhang, N.; Abruña, H. D.; Dichtel, W. R. ACS Cent. Sci. 2016, 2, 667.
doi: 10.1021/acscentsci.6b00220
Xu, F.; Xu, H.; Chen, X.; Wu, D.; Wu, Y.; Liu, H.; Gu, C.; Fu, R.; Jiang, D. Angew. Chem. Int. Ed. 2015, 54, 6814.
doi: 10.1002/anie.201501706
Chandra, S.; Roy Chowdhury, D.; Addicoat, M.; Heine, T.; Paul, A.; Banerjee, R. Chem. Mater. 2017, 29, 2074.
doi: 10.1021/acs.chemmater.6b04178
Stamenkovic, V. R.; Strmcnik, D.; Lopes, P. P.; Markovic, N. M. Nat. Mater. 2016, 16, 57.
Stamenkovic, V. R.; Strmcnik, D.; Lopes, P. P.; Markovic, N. M. Nat. Mater. 2016, 16, 57.
Fujishima, A.; Honda, K. Nature 1972, 238, 37.
doi: 10.1038/238037a0
(a) Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253. (b) Chen, S.; Takata, T.; Domen, K. Nat. Rev. Mater. 2017, 2, 17050.
(a) Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. Nat. Mater. 2009, 8, 76. (b) Schwinghammer, K.; Mesch, M. B.; Duppel, V.; Ziegler, C.; Senker, J.; Lotsch, B. V. J. Am. Chem. Soc. 2014, 136, 1730.
(a) Sprick, R. S.; Jiang, J. X.; Bonillo, B.; Ren, S.; Ratvijitvech, T.; Guiglion, P.; Zwijnenburg, M. A.; Adams, D. J.; Cooper, A. I. J. Am. Chem. Soc. 2015, 137, 3265. (b) Li, L.; Cai, Z.; Wu, Q.; Lo, W. Y.; Zhang, N.; Chen, L. X.; Yu, L. J. Am. Chem. Soc. 2016, 138, 7681. (c) Yang, C.; Ma, B. C.; Zhang, L.; Lin, S.; Ghasimi, S.; Landfester, K.; Zhang, K. A.; Wang, X. Angew. Chem. Int. Ed. 2016, 55, 9202.
(a) Woods, D. J.; Sprick, R. S.; Smith, C. L.; Cowan, A. J.; Cooper, A. I. Adv. Energy Mater. 2017, 7, 1700479. (b) Sprick, R. S.; Bonillo, B.; Clowes, R.; Guiglion, P.; Brownbill, N. J.; Slater, B. J.; Blanc, F.; Zwijnenburg, M. A.; Adams, D. J.; Cooper, A. I. Angew. Chem. Int. Ed. 2016, 55, 1792.
Stegbauer, L.; Schwinghammer, K.; Lotsch, B. V. Chem. Sci. 2014, 5, 2789.
doi: 10.1039/C4SC00016A
Vyas, V. S.; Haase, F.; Stegbauer, L.; Savasci, G.; Podjaski, F.; Ochsenfeld, C.; Lotsch, B. V. Nat. Commun. 2015, 6, 8508.
doi: 10.1038/ncomms9508
Pachfule, P.; Acharjya, A.; Roeser, J.; Langenhahn, T.; Schwarze, M.; Schomacker, R.; Thomas, A.; Schmidt, J. J. Am. Chem. Soc. 2018, 140, 1423.
doi: 10.1021/jacs.7b11255
Wang, X.; Chen, L.; Chong, S. Y.; Little, M. A.; Wu, Y.; Zhu, W. H.; Clowes, R.; Yan, Y.; Zwijnenburg, M. A.; Sprick, R. S.; Cooper, A. I. Nat. Chem. 2018, 10, 1180.
doi: 10.1038/s41557-018-0141-5
Berardi, S.; Drouet, S.; Francàs, L.; Gimbert-Suri ach, C.; Guttentag, M.; Richmond, C.; Stoll, T.; Llobet, A. Chem. Soc. Rev. 2014, 43, 7501.
doi: 10.1039/C3CS60405E
(a) Reier, T.; Oezaslan, M.; Strasser, P. ACS Catal. 2012, 2, 1765. (b) Sardar, K.; Petrucco, E.; Hiley, C. I.; Sharman, J. D.; Wells, P. P.; Russell, A. E.; Kashtiban, R. J.; Sloan, J.; Walton, R. I. Angew. Chem. Int. Ed. 2014, 53, 10960.
(a) Chang, J.; Xiao, Y.; Xiao, M.; Ge, J.; Liu, C.; Xing, W. ACS Catal. 2015, 5, 6874. (b) Zhang, C.; Antonietti, M.; Fellinger, T.-P. Adv. Funct. Mater. 2014, 24, 7655. (c) Wu, L.; Li, Q.; Wu, C. H.; Zhu, H.; Mendoza-Garcia, A.; Shen, B.; Guo, J.; Sun, S. J. Am. Chem. Soc. 2015, 137, 7071. (d) Zhang, G.; Huang, C.; Wang, X. Small, 2015, 11, 1215.
Blakemore, J. D.; Crabtree, R. H.; Brudvig, G. W. Chem. Rev. 2015, 115, 12974.
doi: 10.1021/acs.chemrev.5b00122
Aiyappa, H. B.; Thote, J.; Shinde, D. B.; Banerjee, R.; Kurungot, S. Chem. Mater. 2016, 28, 4375.
doi: 10.1021/acs.chemmater.6b01370
Mullangi, D.; Dhavale, V.; Shalini, S.; Nandi, S.; Collins, S.; Woo, T.; Kurungot, S.; Vaidhyanathan, R. Adv. Energy Mater. 2016, 6, 1600110.
doi: 10.1002/aenm.201600110
Nandi, S.; Singh, S. K.; Mullangi, D.; Illathvalappil, R.; George, L.; Vinod, C. P.; Kurungot, S.; Vaidhyanathan, R. Adv. Energy Mater. 2016, 6, 1601189.
doi: 10.1002/aenm.201601189
(a) Lewis, N. S.; Nocera, D. G. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 15729. (b) Gray, H. B. Nat. Chem. 2009, 1, 7.
(a) Zhao, G.; Huang, X.; Wang, X.; Wang, X. J. Mater. Chem. A 2017, 5, 21625. (b) Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K. Angew. Chem. Int. Ed. 2013, 52, 7372. (c) Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Nature 1979, 277, 637. (d) Thampi, K. R.; Kiwi, J.; Gr tzel, M. Nature 1987, 327, 506. (e) Tu, W.; Zhou, Y.; Zou, Z. Adv. Mater. 2014, 26, 4607.
(a) Lin, W.; Frei, H. J. Am. Chem. Soc. 2005, 127, 1610. (b) Anpo, M.; Takeuchi, M. J. Catal. 2003, 216, 505. (c) Shioya, Y.; Ikeue, K.; Ogawa, M.; Anpo, M. Appl. Catal. A: General 2003, 254, 251. (d) Matsuoka, M.; Anpo, M. J. Photochem. Photobiol. C: Photochem. Rev. 2003, 3, 225. (e) Anpo, M.; Yamashita, H.; Ikeue, K.; Fujii, Y.; Zhang, S. G.; Ichihashi, Y.; Park, D. R.; Suzuki, Y.; Koyano, K.; Tatsumi, T. Catal. Today 1998, 44, 327. (f) Anpo, M. J. CO2 Util. 2013, 1, 8. (g) Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D. W. Chem. Rev. 2014, 114, 9919.
Yang, S.; Hu, W.; Zhang, X.; He, P.; Pattengale, B.; Liu, C.; Cendejas, M.; Hermans, I.; Zhang, X.; Zhang, J.; Huang, J. J. Am. Chem. Soc. 2018, 140, 14614.
doi: 10.1021/jacs.8b09705
Lin, S.; Diercks, C. S.; Zhang, Y.-B.; Kornienko, N.; Nichols, E. M.; Zhao, Y.; Paris, A. R.; Kim, D.; Yang, P.; Yaghi, O. M.; Chang, C. J. Science 2015, 349, 1208.
doi: 10.1126/science.aac8343
Diercks, C. S.; Lin, S.; Kornienko, N.; Kapustin, E. A.; Nichols, E. M.; Zhu, C.; Zhao, Y.; Chang, C. J.; Yaghi, O. M. J. Am. Chem. Soc. 2018, 140, 1116.
doi: 10.1021/jacs.7b11940
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
Zhao Lu , Hu Lv , Qinzhuang Liu , Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005
Fan Wu , Wenchang Tian , Jin Liu , Qiuting Zhang , YanHui Zhong , Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031
Kuaibing Wang , Honglin Zhang , Wenjie Lu , Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
Yangrui Xu , Yewei Ren , Xinlin Liu , Hongping Li , Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
Xiaoling LUO , Pintian ZOU , Xiaoyan WANG , Zheng LIU , Xiangfei KONG , Qun TANG , Sheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271
Wen LUO , Lin JIN , Palanisamy Kannan , Jinle HOU , Peng HUO , Jinzhong YAO , Peng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346