Citation: Guo Yu, Li Yanrui, Wang Chengming, Long Ran, Xiong Yujie. Photogenerated Charge Separation and Photocatalytic Hydrogen Production of TiO2/Graphene Composite Materials[J]. Acta Chimica Sinica, ;2019, 77(6): 520-524. doi: 10.6023/A19040108 shu

Photogenerated Charge Separation and Photocatalytic Hydrogen Production of TiO2/Graphene Composite Materials

  • Corresponding author: Li Yanrui, liyanrui91@mail.xjtu.edu.cn Long Ran, longran@ustc.edu.cn Xiong Yujie, yjxiong@ustc.edu.cn
  • Received Date: 1 April 2019
    Available Online: 30 June 2019

    Fund Project: Project supported by the National Key Research & Development Program of China (Nos. 2017YFA0207301, 2017YFA0207302) and the National Natural Science Foundation of China (Nos. 21725102, U1832156, 21601173, 21573212)the National Natural Science Foundation of China 21601173the National Natural Science Foundation of China U1832156the National Key Research & Development Program of China 2017YFA0207301the National Key Research & Development Program of China 2017YFA0207302the National Natural Science Foundation of China 21573212the National Natural Science Foundation of China 21725102

Figures(6)

  • Separation of photogenerated charges is one of the key steps in photocatalysis, whose efficiency largely determines the overall photocatalytic performance in water splitting. It is known that the formation of hybrid nanostructures is a promising solution to improve photocatalytic performance. However, the chemical environment difference during the synthesis of hybrid nanostructures may bring additional influencing factors to material systems. In this case, the design and synthesis of well-defined and clean samples are highly important to fundamental investigations. Integrating TiO2 nanosheets with graphene can enhance the photocatalytic activity of TiO2 through the effective separation of the photogenerated electrons and holes across the interface formed by C-O bonds. To investigate the influence of photogenerated charge separation on the photocatalytic performance of TiO2/graphene composites, we modulate the separation of the photogenerated charges by controlling the size and thickness of TiO2 nanosheets with the same chemical environment, which helps investigate its effect on the photocatalytic performance of TiO2/graphene composites. Specifically, a series of TiO2 nanosheets with different thickness are synthesized by controlling the amount of hydrofluoric acid and combined with graphene for photocatalytic hydrogen production. The hybrid nanostructures are formed through a simple and clean process so as to possess a reliable platform for evaluating the relationship between structural parameters and performance in photocatalytic hydrogen production. The experiment results show that the photocatalytic activity of TiO2/rGO composites increases with the reduction in the thickness of TiO2 nanosheets. As the thickness of TiO2 nanosheets decreases, the migration distance of the photo-excited electrons is reduced so as to effectively suppress the recombination of the photo-excited charges. In the meanwhile, the TiO2/graphene interface is enlarged to promote the separation of the photogenerated charges in TiO2. As a result, the utilization efficiency of the photogenerated charges has been substantially enhanced. This work demonstrates that modulating the separation of photogenerated charges in TiO2/graphene composites by controlling the size of TiO2 nanosheets is an effective strategy for improving the photocatalytic performance of TiO2/graphene composites.
  • 加载中
    1. [1]

      Chiu, W. H.; Lee, K. M.; Hsieh, W. F. J. Power Sources 2011, 196, 3683.  doi: 10.1016/j.jpowsour.2010.12.063

    2. [2]

      Zhang, Y. H.; Tang, Z. R.; Fu, X. Z.; Xu, Y. J. ACS Nano 2010, 4, 7303.  doi: 10.1021/nn1024219

    3. [3]

      Perera, S. D.; Mariano, R. G.; Vu, K.; Nour, N.; Seitz, O.; Chabal, Y.; Balkus, K. J. ACS Catal. 2012, 2, 949.  doi: 10.1021/cs200621c

    4. [4]

      Wang, G. M.; Wang, H. Y.; Ling, Y. C.; Tang, Y. C.; Yang, X. Y.; Fitzmorris, R. C.; Wang, C. C.; Zhang, J. Z.; Li, Y. Nano Lett. 2011, 11, 3026.  doi: 10.1021/nl201766h

    5. [5]

      Wang, D. H.; Choi, D. W.; Li, J.; Yang, Z. G.; Nie, Z. M.; Kou, R.; Hu, D. H.; Wang, C. M.; Saraf, L. V.; Zhang, J. G.; Aksay, I. A.; Liu, J. ACS Nano 2009, 3, 907.  doi: 10.1021/nn900150y

    6. [6]

      Chu, W. Y.; Tang, X.; Li, Z.; Lin, J. C.; Qian, J. S. Acta Chim. Sinica 2018, 76, 549(in Chinese).
       

    7. [7]

      Konaka, R.; Kasahara, E.; Dunlap, W. C.; Yamamoto, Y.; Chien, K. C.; Inoue, M. Free Radical Bio. Med. 1999, 27, 294.  doi: 10.1016/S0891-5849(99)00050-7

    8. [8]

      Miljevic, M.; Geiseler, B.; Bergfeldt, T.; Bockstaller, P.; Fruk, L. Adv. Funct. Mater. 2014, 24, 907.  doi: 10.1002/adfm.v24.7

    9. [9]

      Shang, L.; Tong, B. A.; Yu, H. J.; Waterhouse, G. I. N.; Zhou, C.; Zhao, Y. F.; Tahir, M.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Adv. Energy Mater. 2016, 6, 1501241.  doi: 10.1002/aenm.201501241

    10. [10]

      An, X. H.; Wang, Y.; Lin, J. J.; Shen, J. N.; Zhang, Z. Z.; Wang, X. X. Sci. Bull. 2017, 62, 599.  doi: 10.1016/j.scib.2017.03.025

    11. [11]

      Jin, Q. L.; Fujishima, M.; Tada, H. J. Phys. Chem. C 2011, 115, 6478.  doi: 10.1021/jp201131t

    12. [12]

      Ratanatawanate, C.; Xiong, C. R.; Balkus, K. J. ACS Nano 2008, 2, 1682.  doi: 10.1021/nn800141e

    13. [13]

      Lee, H.; Leventis, H. C.; Moon, S. J.; Chen, P.; Ito, S.; Haque, S. A.; Torres, T.; Nuesch, F.; Geiger, T.; Zakeeruddin, S. M.; Gratzel, M.; Nazeeruddin, M. K. Adv. Funct. Mater. 2009, 19, 2735.  doi: 10.1002/adfm.v19:17

    14. [14]

      Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Science 2001, 293, 269.  doi: 10.1126/science.1061051

    15. [15]

      Hirakawa, T.; Kamat, P. V. J. Am. Chem. Soc. 2005, 127, 3928.  doi: 10.1021/ja042925a

    16. [16]

      Xu, C. Y.; Lin, J. Y.; Pan, F. Q.; Deng, B. W.; Wang, Z. H.; Zhou, J. H.; Chen, Y.; Ma, J. C.; Gu, Z. E.; Zhang, Y. W. Acta Chim. Sinica 2017, 75, 699(in Chinese).  doi: 10.11862/CJIC.2017.051
       

    17. [17]

      Du, P. J.; Su, T. M.; Luo, X.; Zhou, X. T.; Qin, Z. Z.; Ji, H. B.; Chen, J. H. Chinese J. Chem. 2018, 36, 538.  doi: 10.1002/cjoc.v36.6

    18. [18]

      Subramanian, V.; Wolf, E.; Kamat, P. V. J. Phys. Chem. B 2001, 105, 11439.  doi: 10.1021/jp011118k

    19. [19]

      Yen, C. Y.; Lin, Y. F.; Hung, C. H.; Tseng, Y. H.; Ma, C. C.; Chang, M. C.; Shao, H. Nanotechnology 2008, 19.

    20. [20]

      Zhang, X. Y.; Li, H. P.; Cui, X. L.; Lin, Y. H. J. Mater. Chem. 2010, 20, 2801.  doi: 10.1039/b917240h

    21. [21]

      Yang, N.; Liu, Y.; Wen, H.; Tang, Z.; Zhao, H.; Li, Y.; Wang, D. ACS Nano 2013, 7, 1504.  doi: 10.1021/nn305288z

    22. [22]

      Gu, L. A.; Wang, J. Y.; Cheng, H.; Zhao, Y. Z.; Liu, L. F.; Han, X. J. ACS Appl. Mater. Inter. 2013, 5, 3085.  doi: 10.1021/am303274t

    23. [23]

      Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Nature 2008, 453, 638.  doi: 10.1038/nature06964

    24. [24]

      Sun, L.; Zhao, Z. L.; Zhou, Y. C.; Liu, L. Nanoscale 2012, 4, 613.  doi: 10.1039/C1NR11411E

    25. [25]

      Shah, M. S. A. S.; Park, A. R.; Zhang, K.; Park, J. H.; Yoo, P. J. ACS Appl. Mater. Inter. 2012, 4, 3893.  doi: 10.1021/am301287m

    26. [26]

      Zhu, C. Z.; Guo, S. J.; Wang, P.; Xing, L.; Fang, Y. X.; Zhai, Y. M.; Dong, S. J. Chem. Commnu. 2010, 46, 7148.  doi: 10.1039/c0cc01459a

    27. [27]

      Zhang, W. X.; Cui, J. C.; Tao, C. A.; Wu, Y. G.; Li, Z. P.; Ma, L.; Wen, Y. Q.; Li, G. T. Angew. Chem. Int. Ed. 2009, 48, 5864.  doi: 10.1002/anie.v48:32

    28. [28]

      Ni, Z. H.; Wang, Y. Y.; Yu, T.; Shen, Z. X. Nano Res. 2008, 1, 273.  doi: 10.1007/s12274-008-8036-1

    29. [29]

      Liang, Y. Y.; Wang, H. L.; Casalongue, H. S.; Chen, Z.; Dai, H. J. Nano Res. 2010, 3, 701.  doi: 10.1007/s12274-010-0033-5

    30. [30]

      Pan, J.; Liu, G.; Lu, G. M.; Cheng, H. M. Angew. Chem. Int. Ed. 2011, 50, 2133.  doi: 10.1002/anie.v50.9

    31. [31]

      Selloni, A. Nat. Mater. 2008, 7, 613.  doi: 10.1038/nmat2241

    32. [32]

      Liu, S. W.; Yu, J. G.; Jaroniec, M. Chem. Mater. 2011, 23, 4085.  doi: 10.1021/cm200597m

    33. [33]

      Klepser, B. M.; Bartlett, B. M. J. Am. Chem. Soc. 2014, 136, 1694.  doi: 10.1021/ja4086808

  • 加载中
    1. [1]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    2. [2]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    3. [3]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    4. [4]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    5. [5]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    6. [6]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    7. [7]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    8. [8]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    9. [9]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    10. [10]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    11. [11]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    12. [12]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    13. [13]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    14. [14]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    15. [15]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    16. [16]

      Xiangchun Li Wei Xue Xu Liu Wenyong Lai . Research and Practice on the Cultivation of Innovation Ability of Chemistry Graduate Students in Electronic Information Universities: A Case Study of Nanjing University of Posts and Telecommunications. University Chemistry, 2024, 39(6): 55-62. doi: 10.3866/PKU.DXHX202310018

    17. [17]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    18. [18]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    19. [19]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    20. [20]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

Metrics
  • PDF Downloads(9)
  • Abstract views(802)
  • HTML views(137)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return