Citation: Guo Yu, Li Yanrui, Wang Chengming, Long Ran, Xiong Yujie. Photogenerated Charge Separation and Photocatalytic Hydrogen Production of TiO2/Graphene Composite Materials[J]. Acta Chimica Sinica, ;2019, 77(6): 520-524. doi: 10.6023/A19040108 shu

Photogenerated Charge Separation and Photocatalytic Hydrogen Production of TiO2/Graphene Composite Materials

  • Corresponding author: Li Yanrui, liyanrui91@mail.xjtu.edu.cn Long Ran, longran@ustc.edu.cn Xiong Yujie, yjxiong@ustc.edu.cn
  • Received Date: 1 April 2019
    Available Online: 30 June 2019

    Fund Project: Project supported by the National Key Research & Development Program of China (Nos. 2017YFA0207301, 2017YFA0207302) and the National Natural Science Foundation of China (Nos. 21725102, U1832156, 21601173, 21573212)the National Natural Science Foundation of China 21601173the National Natural Science Foundation of China U1832156the National Key Research & Development Program of China 2017YFA0207301the National Key Research & Development Program of China 2017YFA0207302the National Natural Science Foundation of China 21573212the National Natural Science Foundation of China 21725102

Figures(6)

  • Separation of photogenerated charges is one of the key steps in photocatalysis, whose efficiency largely determines the overall photocatalytic performance in water splitting. It is known that the formation of hybrid nanostructures is a promising solution to improve photocatalytic performance. However, the chemical environment difference during the synthesis of hybrid nanostructures may bring additional influencing factors to material systems. In this case, the design and synthesis of well-defined and clean samples are highly important to fundamental investigations. Integrating TiO2 nanosheets with graphene can enhance the photocatalytic activity of TiO2 through the effective separation of the photogenerated electrons and holes across the interface formed by C-O bonds. To investigate the influence of photogenerated charge separation on the photocatalytic performance of TiO2/graphene composites, we modulate the separation of the photogenerated charges by controlling the size and thickness of TiO2 nanosheets with the same chemical environment, which helps investigate its effect on the photocatalytic performance of TiO2/graphene composites. Specifically, a series of TiO2 nanosheets with different thickness are synthesized by controlling the amount of hydrofluoric acid and combined with graphene for photocatalytic hydrogen production. The hybrid nanostructures are formed through a simple and clean process so as to possess a reliable platform for evaluating the relationship between structural parameters and performance in photocatalytic hydrogen production. The experiment results show that the photocatalytic activity of TiO2/rGO composites increases with the reduction in the thickness of TiO2 nanosheets. As the thickness of TiO2 nanosheets decreases, the migration distance of the photo-excited electrons is reduced so as to effectively suppress the recombination of the photo-excited charges. In the meanwhile, the TiO2/graphene interface is enlarged to promote the separation of the photogenerated charges in TiO2. As a result, the utilization efficiency of the photogenerated charges has been substantially enhanced. This work demonstrates that modulating the separation of photogenerated charges in TiO2/graphene composites by controlling the size of TiO2 nanosheets is an effective strategy for improving the photocatalytic performance of TiO2/graphene composites.
  • 加载中
    1. [1]

      Chiu, W. H.; Lee, K. M.; Hsieh, W. F. J. Power Sources 2011, 196, 3683.  doi: 10.1016/j.jpowsour.2010.12.063

    2. [2]

      Zhang, Y. H.; Tang, Z. R.; Fu, X. Z.; Xu, Y. J. ACS Nano 2010, 4, 7303.  doi: 10.1021/nn1024219

    3. [3]

      Perera, S. D.; Mariano, R. G.; Vu, K.; Nour, N.; Seitz, O.; Chabal, Y.; Balkus, K. J. ACS Catal. 2012, 2, 949.  doi: 10.1021/cs200621c

    4. [4]

      Wang, G. M.; Wang, H. Y.; Ling, Y. C.; Tang, Y. C.; Yang, X. Y.; Fitzmorris, R. C.; Wang, C. C.; Zhang, J. Z.; Li, Y. Nano Lett. 2011, 11, 3026.  doi: 10.1021/nl201766h

    5. [5]

      Wang, D. H.; Choi, D. W.; Li, J.; Yang, Z. G.; Nie, Z. M.; Kou, R.; Hu, D. H.; Wang, C. M.; Saraf, L. V.; Zhang, J. G.; Aksay, I. A.; Liu, J. ACS Nano 2009, 3, 907.  doi: 10.1021/nn900150y

    6. [6]

      Chu, W. Y.; Tang, X.; Li, Z.; Lin, J. C.; Qian, J. S. Acta Chim. Sinica 2018, 76, 549(in Chinese).
       

    7. [7]

      Konaka, R.; Kasahara, E.; Dunlap, W. C.; Yamamoto, Y.; Chien, K. C.; Inoue, M. Free Radical Bio. Med. 1999, 27, 294.  doi: 10.1016/S0891-5849(99)00050-7

    8. [8]

      Miljevic, M.; Geiseler, B.; Bergfeldt, T.; Bockstaller, P.; Fruk, L. Adv. Funct. Mater. 2014, 24, 907.  doi: 10.1002/adfm.v24.7

    9. [9]

      Shang, L.; Tong, B. A.; Yu, H. J.; Waterhouse, G. I. N.; Zhou, C.; Zhao, Y. F.; Tahir, M.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Adv. Energy Mater. 2016, 6, 1501241.  doi: 10.1002/aenm.201501241

    10. [10]

      An, X. H.; Wang, Y.; Lin, J. J.; Shen, J. N.; Zhang, Z. Z.; Wang, X. X. Sci. Bull. 2017, 62, 599.  doi: 10.1016/j.scib.2017.03.025

    11. [11]

      Jin, Q. L.; Fujishima, M.; Tada, H. J. Phys. Chem. C 2011, 115, 6478.  doi: 10.1021/jp201131t

    12. [12]

      Ratanatawanate, C.; Xiong, C. R.; Balkus, K. J. ACS Nano 2008, 2, 1682.  doi: 10.1021/nn800141e

    13. [13]

      Lee, H.; Leventis, H. C.; Moon, S. J.; Chen, P.; Ito, S.; Haque, S. A.; Torres, T.; Nuesch, F.; Geiger, T.; Zakeeruddin, S. M.; Gratzel, M.; Nazeeruddin, M. K. Adv. Funct. Mater. 2009, 19, 2735.  doi: 10.1002/adfm.v19:17

    14. [14]

      Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Science 2001, 293, 269.  doi: 10.1126/science.1061051

    15. [15]

      Hirakawa, T.; Kamat, P. V. J. Am. Chem. Soc. 2005, 127, 3928.  doi: 10.1021/ja042925a

    16. [16]

      Xu, C. Y.; Lin, J. Y.; Pan, F. Q.; Deng, B. W.; Wang, Z. H.; Zhou, J. H.; Chen, Y.; Ma, J. C.; Gu, Z. E.; Zhang, Y. W. Acta Chim. Sinica 2017, 75, 699(in Chinese).  doi: 10.11862/CJIC.2017.051
       

    17. [17]

      Du, P. J.; Su, T. M.; Luo, X.; Zhou, X. T.; Qin, Z. Z.; Ji, H. B.; Chen, J. H. Chinese J. Chem. 2018, 36, 538.  doi: 10.1002/cjoc.v36.6

    18. [18]

      Subramanian, V.; Wolf, E.; Kamat, P. V. J. Phys. Chem. B 2001, 105, 11439.  doi: 10.1021/jp011118k

    19. [19]

      Yen, C. Y.; Lin, Y. F.; Hung, C. H.; Tseng, Y. H.; Ma, C. C.; Chang, M. C.; Shao, H. Nanotechnology 2008, 19.

    20. [20]

      Zhang, X. Y.; Li, H. P.; Cui, X. L.; Lin, Y. H. J. Mater. Chem. 2010, 20, 2801.  doi: 10.1039/b917240h

    21. [21]

      Yang, N.; Liu, Y.; Wen, H.; Tang, Z.; Zhao, H.; Li, Y.; Wang, D. ACS Nano 2013, 7, 1504.  doi: 10.1021/nn305288z

    22. [22]

      Gu, L. A.; Wang, J. Y.; Cheng, H.; Zhao, Y. Z.; Liu, L. F.; Han, X. J. ACS Appl. Mater. Inter. 2013, 5, 3085.  doi: 10.1021/am303274t

    23. [23]

      Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Nature 2008, 453, 638.  doi: 10.1038/nature06964

    24. [24]

      Sun, L.; Zhao, Z. L.; Zhou, Y. C.; Liu, L. Nanoscale 2012, 4, 613.  doi: 10.1039/C1NR11411E

    25. [25]

      Shah, M. S. A. S.; Park, A. R.; Zhang, K.; Park, J. H.; Yoo, P. J. ACS Appl. Mater. Inter. 2012, 4, 3893.  doi: 10.1021/am301287m

    26. [26]

      Zhu, C. Z.; Guo, S. J.; Wang, P.; Xing, L.; Fang, Y. X.; Zhai, Y. M.; Dong, S. J. Chem. Commnu. 2010, 46, 7148.  doi: 10.1039/c0cc01459a

    27. [27]

      Zhang, W. X.; Cui, J. C.; Tao, C. A.; Wu, Y. G.; Li, Z. P.; Ma, L.; Wen, Y. Q.; Li, G. T. Angew. Chem. Int. Ed. 2009, 48, 5864.  doi: 10.1002/anie.v48:32

    28. [28]

      Ni, Z. H.; Wang, Y. Y.; Yu, T.; Shen, Z. X. Nano Res. 2008, 1, 273.  doi: 10.1007/s12274-008-8036-1

    29. [29]

      Liang, Y. Y.; Wang, H. L.; Casalongue, H. S.; Chen, Z.; Dai, H. J. Nano Res. 2010, 3, 701.  doi: 10.1007/s12274-010-0033-5

    30. [30]

      Pan, J.; Liu, G.; Lu, G. M.; Cheng, H. M. Angew. Chem. Int. Ed. 2011, 50, 2133.  doi: 10.1002/anie.v50.9

    31. [31]

      Selloni, A. Nat. Mater. 2008, 7, 613.  doi: 10.1038/nmat2241

    32. [32]

      Liu, S. W.; Yu, J. G.; Jaroniec, M. Chem. Mater. 2011, 23, 4085.  doi: 10.1021/cm200597m

    33. [33]

      Klepser, B. M.; Bartlett, B. M. J. Am. Chem. Soc. 2014, 136, 1694.  doi: 10.1021/ja4086808

  • 加载中
    1. [1]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    2. [2]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    3. [3]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    4. [4]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    5. [5]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    6. [6]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    9. [9]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    10. [10]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    11. [11]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    12. [12]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    13. [13]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    14. [14]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    15. [15]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    16. [16]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    17. [17]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    18. [18]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    19. [19]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    20. [20]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

Metrics
  • PDF Downloads(8)
  • Abstract views(759)
  • HTML views(128)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return