Citation: Qu Luping, Ren Tong, Wang Ning, Shi Yueli, Zhuang Quanchao. Electrochemical Impedance Spectroscopy Study on the First Sodium Insertion Process of Hard Carbon Material Electrode[J]. Acta Chimica Sinica, ;2019, 77(7): 634-640. doi: 10.6023/A19030103 shu

Electrochemical Impedance Spectroscopy Study on the First Sodium Insertion Process of Hard Carbon Material Electrode

  • Corresponding author: Zhuang Quanchao, zhuangquanchao@126.com
  • Received Date: 29 March 2019
    Available Online: 12 July 2019

Figures(8)

  • In this study, electrochemical impedance spectroscopy (EIS) combined with cyclic volt-ampere (CV), charge-discharge measurement and scanning electron microscope were used. The electrode interface characteristics of hard carbon electrodes for sodium ion batteries in 1 mol/L NaClO4-EC:DEC and 1 mol/L-NaClO4-EC:DEC:PC electrolyte systems were discussed. The hard carbon material electrode is composed of 80 wt% active material, 10 wt% PVDF-HFP adhesive and 10 wt% conductive carbon black. The charge and discharge performance was tested with 2032 button battery and metal sodium sheet as counter electrode, the charge and discharge rate was 0.1 C, and the cut-off voltage was 0~3 V. The three-electrode glass cell system was used for CV and EIS test, and the metal sodium sheet was used as the reference and auxiliary electrode. In the CV test, the scanning speed is 1 mV/s, EIS and the frequency scanning range is 105 to 10-2 Hz. The amplitude of AC signal applied by 2 mV is 5 mV. The electrochemical impedance spectra obtained in the experiment were simulated by Zview software. The results of CV show that the intercalation process of sodium ion in hard carbon materials is mainly divided into two steps, that is, the filling process of sodium ion in nano-pores, the intercalation of sodium ion in graphene layer and the adsorption and desorption of sodium ion on the surface or defect. The filling process of sodium ion in the nanoporous is accompanied by the formation of solid electrolyte interface (SEI) film on the surface of the electrode. The results of electrochemical impedance spectroscopy show that the spectrum consists of two semicircles and a oblique line, which can be attributed to the contact impedance, the diffusion of sodium ions through SEI film and the process of charge transfer. The oblique domain reflects the oblique line related to the solid diffusion of sodium ion in the particles of hard carbon materials. By selecting the appropriate equivalent circuit and fitting the experimental results, we can get the variation of SEI film resistance and electron resistance with the electrode polarization potential in the process of sodium insertion in the first week of the hard carbon electrode.
  • 加载中
    1. [1]

      Tarascon, J. M. Nat. Chem. 2010, 2, 510.  doi: 10.1038/nchem.680

    2. [2]

      Xiang, X. D.; Lu, Y. Y.; Chen, J. Acta Chim. Sinica 2017, 75, 154.
       

    3. [3]

      Vikström, H.; Davidsson, S.; Höök, M. Appl. Energy 2013, 110, 252.  doi: 10.1016/j.apenergy.2013.04.005

    4. [4]

      Kundu, D.; Talaie, E.; Duffort, V.; Nazar, L. F. Angew. Chem., Int. Ed. 2015, 54, 3431.  doi: 10.1002/anie.201410376

    5. [5]

      Li, H.; Wang, Z.; Chen, L.; Huang, X. Adv. Mater. 2009, 21, 4593.  doi: 10.1002/adma.v21:45

    6. [6]

      Komaba, S.; Murata, W.; Ishikawa, T.; Yabuuchi, N.; Ozeki, T.; Nakayama, T.; Ogata, A.; Gotoh, K.; Fujiwara, K. Adv. Funct. Mater. 2011, 21, 3859.  doi: 10.1002/adfm.v21.20

    7. [7]

      Zhang, S. W.; Zhang, J.; Wu, S. D.; Lv, W.; Kang, F. Y.; Yang, Q. H. Acta Chim. Sinica 2017, 75, 163.  doi: 10.11862/CJIC.2017.023
       

    8. [8]

      Wang, L.; Yang, G. R.; Wang, J. N.; Wang, S. L.; Peng, S. J.; Yan, W. Acta Chim. Sinica 2018, 76, 666.  doi: 10.3969/j.issn.0253-2409.2018.06.004
       

    9. [9]

      Narayanrao, R.; Joglekar, M.; Inguva, S. J. Electrochem. Soc. 2013, 160, A125.  doi: 10.1149/2.013302jes

    10. [10]

      Lin, X.; Park, J.; Liu, L.; Lee, Y.; Sastry, A.; Lu, W. J. Electrochem. Soc. 2013, 160, A1701.  doi: 10.1149/2.040310jes

    11. [11]

      Pinson, M. B.; Bazant, M. Z. J. Electrochem. Soc. 2013, 160, A243.  doi: 10.1149/2.044302jes

    12. [12]

      Xu, K. Chem. Rev. 2014, 114, 11503.  doi: 10.1021/cr500003w

    13. [13]

      Zhuang, Q. C.; Xu, S. D.; Qiu, X. Y.; Cui, Y. L.; Fang, L.; Sun, S. G. Prog. Chem. 2010, 22, 1044.
       

    14. [14]

      Qin, Y. P.; Zhuang, Q. C.; Shi, Y. L.; Jiang, L.; Sun, Z.; Sun, S. G. Prog. Chem. 2011, 23, 390.

    15. [15]

      Qiu, X. Y.; Zhuang, Q. C.; Zhang, Q. Q.; Cao, R.; Ying, P. Z.; Qiang, Y. H.; Sun, S. G. Phys. Chem. Chem. Phys. 2012, 14, 2617.  doi: 10.1039/c2cp23626e

    16. [16]

      Zhuang, Q. C.; Wei, T.; Du, L. L.; Cui, Y. L.; Fang, L.; Sun, S. G. J. Phys. Chem. C 2010, 114, 8614.  doi: 10.1021/jp9109157

    17. [17]

      Qiu, X. Y.; Zhuang, Q. C.; Zhang, Q. Q.; Cao, R.; Qiang, Y. H.; Ying, P. Z.; Sun, S. G. J. Electroanal. Chem. 2012, 687, 35.  doi: 10.1016/j.jelechem.2012.09.027

    18. [18]

      Wei, T.; Zhuang, Q. C.; Wu, C.; Cui, Y. L.; Fang, L.; Sun, S. G. Acta Chim. Sinica 2010, 68, 1481.  doi: 10.3866/PKU.WHXB20100621
       

    19. [19]

      Zhuang, Q. C.; Wei, T.; Wei, G. Z.; Dong, Q. F.; Sun, S. G. Acta Chim. Sinica 2009, 67, 2184.
       

    20. [20]

      Zheng, M.; Liu, Y.; Xiao, Y.; Zhu, Y.; Guan, Q.; Yuan, D.; Zhang, J. J. Phys. Chem. C 2009, 113, 8455.  doi: 10.1021/jp811356a

    21. [21]

      Cao, Y.; Xiao, L.; Sushko, M. L.; Wang, W.; Schwenzer, B.; Xiao, J.; Nie, Z.; Saraf, L. V.; Yang, Z.; Liu, J. Nano Lett. 2012, 12, 3783.  doi: 10.1021/nl3016957

    22. [22]

      Li, Y.; Hu, Y. S.; Titirici, M. M.; Chen, L.; Huang, X. Adv. Energy Mater. 2016, 6, 1600659.  doi: 10.1002/aenm.201600659

    23. [23]

      Liu, P.; Li, Y.; Hu, Y. S.; Li, H.; Chen, L.; Huang, X. J. Mater. Chem. A 2016, 4, 13046.  doi: 10.1039/C6TA04877C

    24. [24]

      Holzapfel, M.; Martinent, A.; Alloin, F.; Le Gorrec, B.; Yazami, R.; Montella, C. J. Electroanal. Chem. 2003, 546, 41.  doi: 10.1016/S0022-0728(03)00144-X

    25. [25]

      Chang, Y. C.; Sohn, H. J. J. Electrochem. Soc. 2000, 147, 50.  doi: 10.1149/1.1393156

    26. [26]

      Levi, M.; Aurbach, D. J. Phys. Chem. B 1997, 101, 4630.  doi: 10.1021/jp9701909

    27. [27]

      Xu, S. D.; Zhuang, Q. C.; Tian, L. L.; Qin, Y. P.; Fang, L.; Sun, S. G. J. Phys. Chem. C 2011, 115, 9210.  doi: 10.1021/jp107406s

    28. [28]

      Zhuang, Q. C.; Li, J.; Tian, L. L. J. Power Sources 2013, 222, 177.  doi: 10.1016/j.jpowsour.2012.08.050

  • 加载中
    1. [1]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    2. [2]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    3. [3]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    4. [4]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    5. [5]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    6. [6]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    7. [7]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    8. [8]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    9. [9]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    10. [10]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    11. [11]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    12. [12]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    13. [13]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    14. [14]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    15. [15]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    16. [16]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    17. [17]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    18. [18]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    19. [19]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    20. [20]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

Metrics
  • PDF Downloads(59)
  • Abstract views(2265)
  • HTML views(557)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return