Citation: Liu Wen-Qiang, Yang Xiu-Long, Tung Chen-Ho, Wu Li-Zhu. Activation of S-H and N-H Bonds to Synthesize Sulfinamides via Cross Coupling Hydrogen Evolution[J]. Acta Chimica Sinica, ;2019, 77(9): 861-865. doi: 10.6023/A19030077 shu

Activation of S-H and N-H Bonds to Synthesize Sulfinamides via Cross Coupling Hydrogen Evolution

  • Corresponding author: Wu Li-Zhu, lzwu@mail.ipc.ac.cn
  • Received Date: 6 March 2019
    Available Online: 22 September 2019

    Fund Project: the Strategic Priority Research Program of the Chinese Academy of Science XDB17000000the National Natural Science Foundation of China 91427303Key Research Program of Frontier Sciences of the Chinese Academy of Science QUZDY-SSW-JSC029the National Natural Science Foundation of China 21861132004the Ministry of Science and Technology of China 2017YFA0206903Project supported by the Ministry of Science and Technology of China (2017YFA0206903), the National Natural Science Foundation of China (91427303 and 21861132004), the Strategic Priority Research Program of the Chinese Academy of Science (XDB17000000), Key Research Program of Frontier Sciences of the Chinese Academy of Science (QUZDY-SSW-JSC029), and K. C. Wong Education Foundation

Figures(6)

  • Catalytic synthesis of organic sulfinamides has great significance and value in organic synthesis, material science, and bioscience. Traditional synthetic methods for sulfinamides are often confronted with various challenges, such as tedious reaction steps, harsh reaction conditions. Direct activation of S-H and N-H bonds to synthesis sulfinamides is the most effective and atomic economic way, which can realize the N-S bonds construction without pre-functionalization of the substrates. To establish a versatile and efficient technology for such reaction, an electrochemical cross coupling hydrogen evolution (CCHE) reaction, which is often used as an environmentally friendly and efficient way to construct new bonds, for synthesis of sulfinamides has been successfully developed by using thiols and amines as the easily available and inexpensive substrates. A series of sulfinamides were prepared with excellent yields and good compatibility of functional groups under extremely mild reaction conditions. Experimental results showed that sulfenamides, which were constructed as intermediate products via radical pathway, were further oxidized to sulfinamides. H218O labeling experiment confirmed that the oxygen of sulfinyl group comes from the trace water in 1, 1, 1, 3, 3, 3-hexafluoro-2-propanol (HFIP). In addition, tetrabutylammonium iodide (TBAI) played important dual roles of intermediate and electrolyte in this reaction system. The typical procedure is as follows:A 20 mL oven-dried reaction vital equipped with a magnetic stir bar was charged with thiol 1 (0.2 mmol), amine 2 (0.3 mmol) and TBAI (0.05 mol/L) in HFIP (5 mL), and exhausted via puncture needle for 15 minutes with argon. The mixture was then electrolysed with carbon foam plate (anode) and platinum plate (cathode) as the electrodes in an undivided cell for 6 hours in 10 mA constant current at room temperature. After the reaction, the mixture was evaporated under reduced pressure to remove the solvent and the residue was purified by chromatography on silica gel to get the desired sulfinamide 3.
  • 加载中
    1. [1]

      (a) Sola, J.; Reves, M.; Riera, A.; Verdaguer, X. Angew. Chem. Int. Ed. 2007, 46, 5020. (b) Beck, E. M.; Hyde, A. M.; Jacobsen, E. N. Org. Lett. 2011, 13, 4260. (c) Viso, A.; de la Pradilla, R. F.; Urena, M.; Bates, R. H.; del Aguila, M. A.; Colomer, I. J. Org. Chem. 2012, 77, 525. (d) Zhang, Z. M.; Chen, P.; Li, W. B.; Niu, Y. F.; Zhao, X. L.; Zhang, J. L. Angew. Chem. Int. Ed. 2014, 53, 4350. (e) Fjelbye, K.; Svenstrup, N.; Puschl, A. Synthesis-Stuttgart 2015, 47, 3231. (f) Su, X.; Zhou, W.; Li, Y. Y.; Zhang, J. L. Angew. Chem. Int. Ed. 2015, 54, 6874. (g) Zhou, W.; Su, X.; Tao, M. N.; Zhu, C. Z.; Zhao, Q. J.; Zhang, J. L. Angew. Chem. Int. Ed. 2015, 54, 14853. (h) Chelouan, A.; Recio, R.; Borrego, L. G.; Alvarez, E.; Khiar, N.; Fernandez, I. Org. Lett. 2016, 18, 3258.

    2. [2]

      (a) Moree, W. J.; Vandermarel, G. A.; Liskamp, R. M. J. Tetrahedron Lett. 1991, 32, 409. (b) Viswanadhan, V. N.; Ghose, A. K.; Hanna, N. B.; Matsumoto, S. S.; Avery, T. L.; Revankar, G. R.; Robins, R. K. J. Med. Chem. 1991, 34, 526. (c) Carreno, M. C. Chem. Rev. 1995, 95, 1717. (d) Khiar, N.; Werner, S.; Mallouk, S.; Lieder, F.; Alcudia, A.; Fernández, I. J. Org. Chem. 2009, 74, 6002. (e) Chelouan, A.; Recio, R.; Borrego, L. G.; Alvarez, E.; Khiar, N.; Fernandez, I. Org. Lett. 2016, 18, 3258.

    3. [3]

      (a) Andreassen, T.; Lorentzen, M.; Hansen, L.-K.; Gautun, O. R. Tetrahedron 2009, 65, 2806. (b) Chen, D.; Xu, M.-H. J. Org. Chem. 2014, 79, 7746.

    4. [4]

      Uchino, M.; Sekiya, M. Chem. Pharm. Bull. 1980, 28, 126.  doi: 10.1248/cpb.28.126

    5. [5]

      (a) Billard, T.; Greiner, A.; Langlois, B. R. Tetrahedron 1999, 55, 7243. (b) Davis, F. A.; Zhang, Y.; Andemichael, Y.; Fang, T.; Fanelli, D. L.; Zhang, H. J. Org. Chem. 1999, 64, 1403. (c) Zhou, P.; Chen, B.-C.; Davis, F. A. Tetrahedron 2004, 60, 8003.

    6. [6]

      Cogan, D. A.; Liu, G.; Kim, K.; Backes, B. J.; Ellman, J. A. J. Am. Chem. Soc. 1998, 120, 8011.  doi: 10.1021/ja9809206

    7. [7]

      Wang, Q.; Tang, X.-Y.; Shi, M. Angew. Chem. Int. Ed. 2016, 55, 10811.  doi: 10.1002/anie.201605066

    8. [8]

      Yu, H.; Li, Z.; Bolm, C. Angew. Chem. Int. Ed. 2018, 57, 15602.  doi: 10.1002/anie.201810548

    9. [9]

      Dai, Q.; Zhang, J. Adv. Synth. Catal. 2018, 360, 1123.  doi: 10.1002/adsc.201701510

    10. [10]

      Taniguchi, N. Eur. J. Org. Chem. 2016, 2016, 2157.  doi: 10.1002/ejoc.201600091

    11. [11]

      Zhong, J.; Meng, Q.; Chen, B.; Tung, C.; Wu, L. Acta Chim. Sinica 2017, 75, 34(in Chinese).  doi: 10.3969/j.issn.0253-2409.2017.01.006
       

    12. [12]

    13. [13]

      (a) Wang, Y.; Qian, P.; Su, J.-H.; Li, Y.; Bi, M.; Zha, Z.; Wang, Z. Green Chem. 2017, 19, 4769. (b) Huang, P.; Wang, P.; Tang, S.; Fu, Z.; Lei, A. Angew. Chem. Int. Ed. 2018, 57, 8115; (c) Liu, K.; Song, C.; Lei, A. Org. Biomol. Chem. 2018, 16, 2375.

    14. [14]

      Gao, X.; Yuan, G.; Chen, H.; Jiang, H.; Li, Y.; Qi, C. Electrochem. Commun. 2013, 34, 242.  doi: 10.1016/j.elecom.2013.06.022

  • 加载中
    1. [1]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    2. [2]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    3. [3]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    4. [4]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    5. [5]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    6. [6]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    7. [7]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    8. [8]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    9. [9]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    10. [10]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    11. [11]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    12. [12]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    13. [13]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    14. [14]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    15. [15]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    16. [16]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    17. [17]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    18. [18]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    19. [19]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    20. [20]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

Metrics
  • PDF Downloads(9)
  • Abstract views(1397)
  • HTML views(261)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return