Citation: Li Wuyang, Xu Lejin. Research Methods for the Degradation Mechanism of Organic Pollutants in Wastewater[J]. Acta Chimica Sinica, ;2019, 77(8): 705-716. doi: 10.6023/A19030073 shu

Research Methods for the Degradation Mechanism of Organic Pollutants in Wastewater

  • Corresponding author: Xu Lejin, xulejin@hust.edu.cn
  • Received Date: 1 March 2019
    Available Online: 7 August 2019

    Fund Project: the National Natural Science Foundation of China 51708238Project supported by the National Natural Science Foundation of China (No. 51708238)

Figures(12)

  • The total discharge of Chinese industrial wastewater is large, and the various organic pollutants contained in wastewater have always been a potential threat to human health. Therefore, it is necessary to develop various technologies for wastewater treatment, especially to study the degradation mechanism of organic pollutants. This paper summarizes the research methods for the degradation mechanism of various organic pollutants in wastewater, including experimental methods and computational simulations. In the experiments, spectral analysis techniques are mainly used to detect the intermediates produced during the degradation of organic pollutants, and then the degradation pathways of organic pollutants are deduced. However, due to the different experimental conditions and experimental methods, the degradation pathways of the same pollutant obtained from the different experiments are controversial. Computational simulations, based on the quantum chemical calculation, quantitative structure-activity relationship model, quantitative structure-biodegradation relationship model and statistical molecular fragmentation model, provide a new method for studying the degradation mechanism of organic pollutants. The combination of experimental methods and computational simulations will provide the foundation and guidance for exploring the degradation mechanism of organic pollutants.
  • 加载中
    1. [1]

      Rueda Márquez, J. J.; Levchuk, I.; Sillanp , M. Catalysts 2018, 8, 673.  doi: 10.3390/catal8120673

    2. [2]

      Ma, L.; Jin, C. Y.; An, L. Y.; Huang, L.; Li, L. J.; Jin, H. B.; Liang, B.; Wei, H. Z.; Sun, C. L. Catal. Commun. 2019, 120, 59.  doi: 10.1016/j.catcom.2018.11.012

    3. [3]

      García-Muñoz, P.; Pliego, G.; Zazo, J. A.; Casas, J. A. J. Environ. Chem. Eng. 2018, 6, 7312.  doi: 10.1016/j.jece.2018.10.051

    4. [4]

      Garcia-Costa, A. L.; Lopez-Perela, L.; Xu, X. Y.; Zazo, J. A.; Rodriguez, J. J.; Casas, J. A. Environ. Sci. Pollut. R 2018, 25, 27748.  doi: 10.1007/s11356-018-2291-9

    5. [5]

      Nidheesh, P. V.; Zhou, M. H.; Oturan, M. A. Chemosphere 2018, 197, 210.  doi: 10.1016/j.chemosphere.2017.12.195

    6. [6]

      Alcocer, S.; Picos, A.; Uribe, A. R.; Pérez, T.; Peralta-Hernández, J. M. Chemosphere 2018, 205, 682.  doi: 10.1016/j.chemosphere.2018.04.155

    7. [7]

      Oturan, N.; Aravindakumar, C. T.; Olvera-Vargas, H.; Sunil Paul, M. M.; Oturan, M. A. Environ. Sci. Pollut. R 2018, 25, 20363.  doi: 10.1007/s11356-017-9309-6

    8. [8]

      Zhu, Y. P.; Wu, M.; Gao, N. Y.; Chu, W. H.; Li, K.; Chen, S. Chem. Eng. J. 2018, 335, 520.  doi: 10.1016/j.cej.2017.10.070

    9. [9]

      Qu, R. J.; Li, C. G.; Liu, J. Q.; Xiao, R. Y.; Pan, X. X.; Zeng, X. L.; Wang, Z. Y.; Wu, J. C. Environ. Sci. Technol. 2018, 52, 7220.  doi: 10.1021/acs.est.8b00499

    10. [10]

      Zhang, F. Z.; Wu, C. F.; Hu, Y.; Wei, C. H. Prog. Chem. 2014, 26, 1079.

    11. [11]

      Cheng, Z. W.; Yang, B. W.; Chen, Q. C.; Tan, Y. J.; Gao, X. P.; Yuan, T.; Shen, Z. M. Chemosphere 2018, 212, 828.  doi: 10.1016/j.chemosphere.2018.08.097

    12. [12]

      Deniere, E.; Van Hulle, S.; Van Langenhove, H.; Demeestere, K. J. Hazard. Mater. 2018, 360, 204.  doi: 10.1016/j.jhazmat.2018.07.071

    13. [13]

      Kıdak, R.; Doğan, Ş.; Ultrason. Sonochem. 2018, 40, 131.  doi: 10.1016/j.ultsonch.2017.01.033

    14. [14]

      Leal, T. W.; Louren o, L. A.; Brand o, H. D.; da Silva, A.; de Souza, S. M. A. G. U.; de Souza, A. A. U. J. Hazard. Mater. 2018, 359, 96.  doi: 10.1016/j.jhazmat.2018.07.018

    15. [15]

      Yang, L.; Tang, X. F.; Peng, X.; Qian, D.; Guo, Q. N.; Guo, H. Pathol. Res. Pract. 2018, 214, 1081.  doi: 10.1016/j.prp.2018.05.013

    16. [16]

      Huang, D. W.; He, J.; Gu, Y. W.; He, F. Acta Chim. Sinica 2017, 75, 866.  doi: 10.7503/cjcu20170030
       

    17. [17]

      Wei, Y.; Zou, Q. C.; Ye, P.; Wang, M. Y.; Li, X. X.; Xu, A. H. Chemosphere 2018, 208, 358.  doi: 10.1016/j.chemosphere.2018.06.006

    18. [18]

      Choi, J.; Cui, M.; Lee, Y.; Kim, J.; Son, Y.; Khim, J. Chem. Eng. J. 2018, 338, 323.  doi: 10.1016/j.cej.2018.01.018

    19. [19]

      Khatri, J.; Nidheesh, P. V.; Anantha Singh, T. S.; Suresh Kumar, M. Chem. Eng. J. 2018, 348, 67.  doi: 10.1016/j.cej.2018.04.074

    20. [20]

      Han, Q.; Yang, S. Y.; Yang, X.; Shao, X. T.; Niu, R.; Wang, L. L. Prog. Chem. 2012, 24, 144.

    21. [21]

      Halliwell, B. Drugs 1991, 42, 569.  doi: 10.2165/00003495-199142040-00003

    22. [22]

      Gomes, A.; Fernandes, E.; Lima, J. J. Biochem. Bioph. Meth. 2005, 65, 45.  doi: 10.1016/j.jbbm.2005.10.003

    23. [23]

      Tai, C.; Gu, X. X.; Zou, H.; Guo, Q. H. Talanta 2002, 58, 661.  doi: 10.1016/S0039-9140(02)00370-3

    24. [24]

      Garcia-Montano, J.; Perez-Estrada, L.; Oller, I.; Maldonado, M. I.; Torrades, F.; Peral, J. J. Photochem. Photobiol. A-Chem. 2008, 195, 205.  doi: 10.1016/j.jphotochem.2007.10.004

    25. [25]

      Pera-Titus, M.; Garcia-Molina, V.; Banos, M. A.; Gimenez, J.; Esplugas, S. Appl. Catal. B-Environ. 2004, 47, 219.  doi: 10.1016/j.apcatb.2003.09.010

    26. [26]

      Shin, S.; Yoon, H.; Jang, J. Catal. Commun. 2008, 10, 178.  doi: 10.1016/j.catcom.2008.08.027

    27. [27]

      Xu, L. J.; Wang, J. L. Environ. Sci. Technol. 2012, 46, 10145.  doi: 10.1021/es300303f

    28. [28]

      Wan, Z.; Wang, J. L. J. Hazard. Mater. 2017, 324, 653.  doi: 10.1016/j.jhazmat.2016.11.039

    29. [29]

      Liu, Y.; Fan, Q.; Wang, J. L. J. Hazard. Mater. 2018, 342, 166.  doi: 10.1016/j.jhazmat.2017.08.016

    30. [30]

      Lyu, L.; Yu, G. F.; Zhang, L. L.; Hu, C.; Sun, Y. Environ. Sci. Technol. 2018, 52, 747.  doi: 10.1021/acs.est.7b04865

    31. [31]

      Wang, J. L.; Xu, L. J. Crit. Rev. Environ. Sci. Technol. 2012, 42, 251.  doi: 10.1080/10643389.2010.507698

    32. [32]

      Rosenfeldt, E. J.; Linden, K. G.; Canonica, S.; von Gunten, U. Water Res. 2006, 40, 3695.  doi: 10.1016/j.watres.2006.09.008

    33. [33]

      Holcman, J.; Sehested, K. J. Phys. Chem. 1977, 81, 1963.  doi: 10.1021/j100535a017

    34. [34]

      Jolly, G. S.; Paraskevopoulos, G.; Singleton, D. L. Int. J. Chem. Kinet. 1985, 17, 1.  doi: 10.1002/kin.550170102

    35. [35]

      Davies, A. K.; Land, E. J.; Navaratnam, S.; Parsons, B. J.; Phillips, G. O. J. Chem. Soc. Faraday T. 1979, 75, 22.  doi: 10.1039/f19797500022

    36. [36]

      Xu, L. J.; Wang, J. L. Sep. Purif. Technol. 2015, 149, 255.  doi: 10.1016/j.seppur.2015.05.011

    37. [37]

      Xu, L. J.; Wang, J. L. J. Hazard. Mater. 2011, 186, 256.  doi: 10.1016/j.jhazmat.2010.10.116

    38. [38]

      Xu, L. J.; Yang, Y. J.; Li, W. Y.; Tao, Y. J.; Sui, Z. G.; Song, S.; Yang, J. Sci. Total Environ. 2019, 658, 219.  doi: 10.1016/j.scitotenv.2018.12.040

    39. [39]

      Xu, L. J.; Meng, X.; Li, M.; Li, W. Y.; Sui, Z. G.; Wang, J. L.; Yang, J. Chem. Eng. J. 2019, 361, 1520.

    40. [40]

      Xu, L. J.; Li, W. Y.; Désesquelles, P.; Van-Oanh, N. T.; Thomas, S.; Yang, J. J. Phys. Chem. A 2019, 123, 933.  doi: 10.1021/acs.jpca.8b10554

    41. [41]

      Lei, L. C.; Dai, Q. Z.; Zhou, M. H.; Zhang, X. W. Chemosphere 2007, 68, 1135.  doi: 10.1016/j.chemosphere.2007.01.075

    42. [42]

      Katsumata, H.; Kawabe, S.; Kaneco, S.; Suzuki, T.; Ohta, K. J. Photochem. Photobiol. A-Chem. 2004, 162, 297.  doi: 10.1016/S1010-6030(03)00374-5

    43. [43]

      Kouloumbos, V. N.; Tsipi, D. F.; Hiskia, A. E.; Nikolic, D.; van Breemen, R. B. J. Am. Soc. Mass Spectrom. 2003, 14, 803.  doi: 10.1016/S1044-0305(03)00333-7

    44. [44]

      An, T. C.; An, J. B.; Yang, H.; Li, G. Y.; Feng, H. X.; Nie, X. P. J. Hazard. Mater. 2011, 197, 229.  doi: 10.1016/j.jhazmat.2011.09.077

    45. [45]

      Prevot, A. B.; Baiocchi, C.; Brussino, M. C.; Pramauro, E.; Savarino, P.; Augugliaro, V.; Marcì, G.; Palmisano, L. Environ. Sci. Technol. 2001, 35, 971.  doi: 10.1021/es000162v

    46. [46]

      Araña, J.; Rendón, E. T.; Rodríguez, J. M. D.; Melián, J. A. H.; Díaz, O. G.; Pe a, J. P. Chemosphere 2001, 44, 1017.  doi: 10.1016/S0045-6535(00)00359-3

    47. [47]

      Huang, F. M.; Chen, L.; Wang, H. L.; Yan, Z. C. Chem. Eng. J. 2010, 162, 250.  doi: 10.1016/j.cej.2010.05.041

    48. [48]

      Ju, Y. M.; Yang, S. G.; Ding, Y. C.; Sun, C.; Gu, C. G.; He, Z.; Qin, C.; He, H.; Xu, B. J. Hazard. Mater. 2009, 171, 123.  doi: 10.1016/j.jhazmat.2009.05.120

    49. [49]

      Daneshvar, N.; Salari, D.; Khataee, A. R. J. Photochem. Photobiol. A-Chem. 2004, 162, 317.  doi: 10.1016/S1010-6030(03)00378-2

    50. [50]

      Annabi, C.; Fourcade, F.; Soutrel, I.; Geneste, F.; Floner, D.; Bellakhal, N.; Amrane, A. J. Environ. Manage. 2016, 165, 96.

    51. [51]

      Song, S.; Xu, L. J.; He, Z. Q.; Chen, J. M.; Xiao, X. Z.; Yan, B. Environ. Sci. Technol. 2007, 41, 5846.  doi: 10.1021/es070224i

    52. [52]

      Drinks, E.; Lepeytre, C.; Lorentz, C.; Dunand, M.; Mangematin, S.; Dappozze, F.; Guillard, C. Chem. Eng. J. 2018, 352, 143.  doi: 10.1016/j.cej.2018.06.120

    53. [53]

      Bonancéa, C. E.; do Nascimento, G. M.; de Souza, M. L.; Temperini, M. L. A.; Corio, P. Appl. Catal. B 2008, 77, 339.  doi: 10.1016/j.apcatb.2007.07.026

    54. [54]

      Oturan, M. A.; Guivarch, E.; Oturan, N.; Sirés, I. Appl. Catal. B 2008, 82, 244.  doi: 10.1016/j.apcatb.2008.01.016

    55. [55]

      Zhang, F. F.; Yediler, A.; Liang, X. M. Chemosphere 2007, 67, 712.  doi: 10.1016/j.chemosphere.2006.10.076

    56. [56]

      Song, S.; Ying, H. P.; He, Z. Q.; Chen, J. M. Chemosphere 2007, 66, 1782.  doi: 10.1016/j.chemosphere.2006.07.090

    57. [57]

      Vajnhandl, S.; Le Marechal, A. M. J. Hazard. Mater. 2007, 141, 329.  doi: 10.1016/j.jhazmat.2006.07.005

    58. [58]

      Guo, Z. F.; Ma, R. X.; Li, G. J. Chem. Eng. J. 2006, 119, 55.  doi: 10.1016/j.cej.2006.01.017

    59. [59]

      Sun, J. Contemporary Chemical Industry 2017, 09, 4.

    60. [60]

      Xiao, W.; Jiang, H. S. Environ. Sci. Tech. 2004, 05, 26.

    61. [61]

      Mosi, A. A.; Reimer, K. J.; Eigendorf, G. K. Talanta 1997, 44, 985.  doi: 10.1016/S0039-9140(96)02172-8

    62. [62]

      Nicol, S.; Dugay, J.; Hennion, M. C. J. Sep. Sci. 2001, 24, 451.  doi: 10.1002/1615-9314(20010601)24:6<451::AID-JSSC451>3.0.CO;2-D

    63. [63]

      Meng, Z. L.; Qi, Y. Y.; Liu, R. M. Chemical Analysis and Meterage 2006, 15, 99.  doi: 10.3969/j.issn.1008-6145.2006.06.041

    64. [64]

      Kovalczuk, T.; Jech, M.; Poustka, J.; Hajslova, J. Anal. Chim. Acta 2006, 577, 8.  doi: 10.1016/j.aca.2006.06.023

    65. [65]

      Churchwell, M. I.; Twaddle, N. C.; Meeker, L. R.; Doerge, D. R. J. Chromatogr. B 2005, 825, 134.  doi: 10.1016/j.jchromb.2005.05.037

    66. [66]

      Zhu, N. W.; Gu, L.; Yuan, H. P.; Lou, Z. Y.; Wang, L.; Zhang, X. Water Res. 2012, 46, 3859.  doi: 10.1016/j.watres.2012.04.038

    67. [67]

      Gosetti, F.; Chiuminatto, U.; Mazzucco, E.; Calabrese, G.; Gennaro, M. C.; Marengo, E. Food Chem. 2013, 136, 617.  doi: 10.1016/j.foodchem.2012.08.019

    68. [68]

      Gu, L.; Song, F. Y.; Zhu, N. W. Appl. Catal. B Environ. 2011, 110, 186.  doi: 10.1016/j.apcatb.2011.08.042

    69. [69]

      Siegel, M. G.; Hahn, P. J.; Dressman, B. A.; Fritz, J. E.; Grunwell, J. R.; Kaldor, S. W. Tetrahedron Lett. 1997, 38, 3357.  doi: 10.1016/S0040-4039(97)00650-3

    70. [70]

      Sleiman, M.; Vildozo, D.; Ferronato, C.; Chovelon, J. M. Appl. Catal. B 2007, 77, 1.  doi: 10.1016/j.apcatb.2007.06.015

    71. [71]

      Hammami, S.; Oturan, N.; Bellakhal, N.; Dachraoui, M.; Oturan, M. A. J. Electroanal. Chem. 2007, 610, 75.  doi: 10.1016/j.jelechem.2007.07.004

    72. [72]

      Smith, J. G. Organic Chemistry, McGraw-Hill Education, New York, 2011, pp. 463~488.

    73. [73]

      Rabi, I. I.; Zacharias, J. R.; Millman, S.; Kusch, P. Phys. Rev. 1938, 53, 131.

    74. [74]

      Jeanmaire, D. L.; Van Duyne, R. P. J. Electroanal. Chem. 1977, 84, 1.  doi: 10.1016/S0022-0728(77)80224-6

    75. [75]

      Lombardi, J. R.; Birke, R. L. J. Phys. Chem. C 2008, 112, 5605.  doi: 10.1021/jp800167v

    76. [76]

      Hisaindee, S.; Meetani, M. A.; Rauf, M. A. Trac-Trends Anal. Chem. 2013, 49, 31.  doi: 10.1016/j.trac.2013.03.011

    77. [77]

      Fernández, C.; Larrechi, M. S.; Callao, M. P. Trac-Trends Anal. Chem. 2010, 29, 1202.  doi: 10.1016/j.trac.2010.07.011

    78. [78]

      Wang, Y.; Liang, J. B.; Liao, X. D.; Wang, L. S.; Loh, T. C.; Dai, J.; Ho, Y. W. Ind. Eng. Chem. Res. 2010, 49, 3527.

    79. [79]

      Neafsey, K.; Zeng, X.; Lemley, A. T. J. Agric. Food Chem. 2010, 58, 1068.  doi: 10.1021/jf904066a

    80. [80]

      Dai, Q. Z.; Zhou, J. Z.; Weng, M. L.; Luo, X. B.; Feng, D. L.; Chen, J. M. Sep. Purif. Technol. 2016, 166, 109.  doi: 10.1016/j.seppur.2016.04.028

    81. [81]

      Pérez, T.; Garcia-Segura, S.; El-Ghenymy, A.; Nava, J. L.; Brillas, E. Electrochim. Acta 2015, 165, 173.  doi: 10.1016/j.electacta.2015.02.243

    82. [82]

      Mardirossian, N.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2014, 16, 9904.  doi: 10.1039/c3cp54374a

    83. [83]

      Vos, A. M.; Nulens, K. H. L.; Proft, F. D.; Schoonheydt, R. A.; Geerlings, P. J. Phys. Chem. B 2002, 106, 2026.  doi: 10.1021/jp014015a

    84. [84]

      Jasmine, G. F.; Amalanathan, M.; Roy, S. D. D. J. Mol. Struct. 2016, 1112, 63.  doi: 10.1016/j.molstruc.2016.02.013

    85. [85]

      Sajan, D.; Sockalingum, G. D.; Manfait, M.; Joel, I. H.; Jayakumar, V. S. J. Raman Spectrosc. 2008, 39, 1772.  doi: 10.1002/jrs.2033

    86. [86]

      Carrier, M.; Guillard, C.; Besson, M.; Bordes, C.; Chermette, H. J. Phys. Chem. A 2009, 113, 6365.  doi: 10.1021/jp810146v

    87. [87]

      Zhao, L. D. M.S. Thesis, Northwest University, Xi'an, 2016(in Chinese).

    88. [88]

      Parr, R. G.; Yang, W. J. Am. Chem. Soc. 1984, 106, 4049.  doi: 10.1021/ja00326a036

    89. [89]

      Yang, W.; Parr, R. G. Proc. Natl. Acad. Sci. U. S. A. 1985, 87, 6723.

    90. [90]

      Yang, W.; Parr, R. G. Pucci, R. J. Chem. Phys. 1984, 81, 2862.

    91. [91]

      Du, J. S.; Guo, W. Q.; Li, X. F.; Li, Q.; Wang, B.; Huang, Y. L.; Ren, N. Q. J. Taiwan Inst. Chem. Eng. 2017, 81, 232.  doi: 10.1016/j.jtice.2017.10.017

    92. [92]

      Gong, C.; Sun, X. M.; Zhang, C. X. Environ. Chem. 2013, 10, 111.  doi: 10.1071/EN12182

    93. [93]

      Wang, Y. W.; Zhang, X. Q.; Du, J.; Hua, S.; Guo, J. M. Biotechnology 2015, 14, 233.  doi: 10.3923/biotech.2015.233.240

    94. [94]

      Armaković, S.; Armaković, S. J.; Abramović, B. F. J. Mol. Model. 2016, 22, 240.  doi: 10.1007/s00894-016-3101-2

    95. [95]

      Mishra, R.; Srivastava, A.; Sharma, A.; Tandon, P.; Baraldi, C.; Gamberini, M. C. Spectrochim. Acta A 2013, 101, 335.  doi: 10.1016/j.saa.2012.09.092

    96. [96]

      Wang, W. P.; Wang, S. B.; Xie, X. F.; Lv, Y. F.; Ramani, V. Int. J. Hydrogen Energy 2014, 39, 14355.  doi: 10.1016/j.ijhydene.2014.03.053

    97. [97]

      He, X.; Zeng, Q.; Zhou, Y.; Zeng, Q. X.; Wei, X. F.; Zhang, C. Y. J. Phys. Chem. A 2016, 120, 3747.  doi: 10.1021/acs.jpca.6b03596

    98. [98]

      Zhou, Y.; Yang, Z. L.; Yang, H.; Zhang, C. Y.; Liu, X. Q. J. Mol. Model. 2017, 23, 139.  doi: 10.1007/s00894-017-3277-0

    99. [99]

      Zhou, Y.; Liu, X. Q.; Jiang, W. D.; Shu, Y. J. J. Mol. Model. 2018, 24, 44.  doi: 10.1007/s00894-018-3580-4

    100. [100]

      Wang, S.; Song, X. D.; Hao, C.; Gao, Z. X.; Chen, J. W.; Qiu, J. S. Chemosphere 2015, 122, 62.  doi: 10.1016/j.chemosphere.2014.11.007

    101. [101]

      Liu, Y.; Yang, B. L.; Yi, C. H. Ind. Eng. Chem. Res. 2013, 52, 6933.  doi: 10.1021/ie400406j

    102. [102]

      Bruzzone, S.; Chiappe, C.; Focardi, S. E.; Pretti, C.; Renzi, M. Chem. Eng. J. 2011, 175, 17.  doi: 10.1016/j.cej.2011.08.073

    103. [103]

      Redding, A. M.; Cannon, F. S.; Snyder, S. A.; Vanderford, B. J. Water Res. 2009, 43, 3849.  doi: 10.1016/j.watres.2009.05.026

    104. [104]

      Fang, D. Q.; Wu, W. J.; Zhang, R.; Zeng, G. H.; Zheng, K. C. Chem. Biol. Drug Des. 2012, 80, 134.  doi: 10.1111/j.1747-0285.2012.01385.x

    105. [105]

      Zhang, Y.; Wei, D. B.; Huang, R.; Yang, M.; Zhang, S. J.; Dou, X. M.; Wang, D. S.; Vimonses, V. Chem. Eng. J. 2011, 166, 624.  doi: 10.1016/j.cej.2010.11.034

    106. [106]

      Dimitrova, N.; Dimitrov, S.; Georgieva, D.; Van Gestel, C. A. M.; Hankard, P.; Spurgeon, D.; Li, H.; Mekenyan, O. Sci. Total Environ. 2010, 408, 3787.  doi: 10.1016/j.scitotenv.2010.01.064

    107. [107]

      Li, X. H.; Zhao, W. X.; Li, J.; Jiang, J. Q.; Chen, J. J.; Chen, J. W. Chemosphere 2013, 92, 1029.  doi: 10.1016/j.chemosphere.2013.03.040

    108. [108]

      Barua, N.; Sarmah, P.; Hussain, I.; Deka, R. C.; Buragohain, A. K. Chem. Biol. Drug Des. 2012, 79, 553.  doi: 10.1111/j.1747-0285.2011.01289.x

    109. [109]

      Cárdenas, C.; Rabi, N.; Ayers, P. W.; Morell, C.; Jaramillo, P.; Fuentealba, P. J. Phys. Chem. A 2009, 113, 8660.  doi: 10.1021/jp902792n

    110. [110]

      Rokhina, E. V.; Suri, R. P. S. Sci. Total Environ. 2012, 417-418, 280.  doi: 10.1016/j.scitotenv.2011.12.008

    111. [111]

      Zhu, H. C.; Shen, Z. M.; Tang, Q. L.; Ji, W. C.; Jia, L. J. Chem. Eng. J. 2014, 255, 431.  doi: 10.1016/j.cej.2014.05.073

    112. [112]

      Han, H. J.; Xu, P.; Jia, S. Y.; Zhuang, H. F.; Hou, B. L.; Wang, D. X.; Li, K.; Zhao, Q.; Ma, W. C. Journal of Harbin Institute of Technology 2015, 47, 30.

    113. [113]

      He, F.; Yuan, X.; Cheng, X. J.; Guo, Y. P.; Zhao, Y. H. China Environmental Science 2001, 21, 152.  doi: 10.3321/j.issn:1000-6923.2001.02.015

    114. [114]

      Li, Y. M.; Gu, G. W.; Zhao, J. F. Journal of Tongji University 2001, 29, 720.  doi: 10.3321/j.issn:0253-374X.2001.06.020

    115. [115]

      Devillers, J.; Pandard, P.; Richard, B. Abstr. Pap. Am. Chem. Soc. 2013, 246, 76.

    116. [116]

      Gross, D. H. E.; Hervieux, P. A. Rep. Prog. Phys. 1990, 53, 605.  doi: 10.1088/0034-4885/53/5/003

    117. [117]

      Aguirre, N. F.; Díaz-Tendero, S.; Hervieux, P. A.; Alcamí, M.; Martín, F. J. Chem. Theory Comput. 2017, 13, 992.  doi: 10.1021/acs.jctc.6b00984

  • 加载中
    1. [1]

      Xueli Mu Lingli Han Tao Liu . Quantum Chemical Calculation Study on the E2 Elimination Reaction of Halohydrocarbon: Designing a Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 68-75. doi: 10.12461/PKU.DXHX202404057

    2. [2]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    3. [3]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    4. [4]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    5. [5]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    6. [6]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    7. [7]

      Wenkai Chen Yunjia Shen Xiangmeng Kong Yanli Zeng . Quantum Chemistry Calculation of Key Physical Quantity in Circularly Polarized Luminescence: Introducing an Exploratory Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 83-91. doi: 10.12461/PKU.DXHX202405018

    8. [8]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    9. [9]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    10. [10]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    11. [11]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    12. [12]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    13. [13]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    14. [14]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    15. [15]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    16. [16]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    17. [17]

      Yaofeng Yuan Keyin Ye Chunfa Xu Hong Yan Yuanming Li . Fostering an International Perspective in Postgraduate Student Teaching: A Case Study of the Organic Structure Analysis Course. University Chemistry, 2024, 39(6): 145-150. doi: 10.3866/PKU.DXHX202402024

    18. [18]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154

    19. [19]

      Dongju Zhang Rongxiu Zhu . Construction of Ideological and Political Education in Quantum Chemistry Course: Several Teaching Cases to Reveal the Universal Connection of Things. University Chemistry, 2024, 39(7): 272-277. doi: 10.3866/PKU.DXHX202311032

    20. [20]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

Metrics
  • PDF Downloads(95)
  • Abstract views(4329)
  • HTML views(1462)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return