Citation: Wang Yuyun, Liu Yunyun. Metal-Free C2-H Aminocarbonylation of Pyridines for the Synthesis of Picolinamides[J]. Acta Chimica Sinica, ;2019, 77(5): 418-421. doi: 10.6023/A19020061 shu

Metal-Free C2-H Aminocarbonylation of Pyridines for the Synthesis of Picolinamides

  • Corresponding author: Liu Yunyun, chemliuyunyun@jxnu.edu.cn
  • Received Date: 11 February 2019
    Available Online: 9 May 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21562024)the National Natural Science Foundation of China 21562024

Figures(2)

  • In this paper, a metal-free catalytic method for synthesis of 2-picolinamide derivatives is reported. Under the promotion of proton acid, simple pyridines react with isocyanides to provide 2-picolinamides by means of the aminocarbonylation of the aryl C-H bond in the C2 position of pyridines. The product formation involves in the electrophilic addition of isocyanide to pyridine ring, hydrolysis and the oxidative aromatization regenerating pyridine ring in the presence of Di-t-butyl peroxide (DTBP) and oxalic acid dihydrate. Control experiments in the optimization section disclose the fact that the proton acid and oxidant are both indispensable for this C-H bond aminocarbonylation reaction. Generally, the synthetic reactions run smoothly under air atmosphere by heating all the substrates and reagents in one-pot at 100℃. The pyridine substrates containing methyl, t-butyl, cyclic dialkyl, methoxyl, halogen substituents at different site of the pyridine ring have displayed fine tolerance to the synthesis of corresponding products with diverse substructures in the pyridine ring. On the other hand, both alkyl and aryl functionalized isocyanides have also been found applicable to this synthetic protocol to provide 2-picolinamides containing correspondingly various N-alkyl and N-aryl fragment. The primary results indicate that the stability of the isocyanide substrate evidently influence the reaction result. The reactions employing relatively more stable 2, 6-dimethylphenyl isocyanide give corresponding products with higher yield than those ones using other isocyanides. Comparing with those reported methods employing transition metal catalyst such as silver or palladium salt to activate the C2-H bond in pyridines for the synthesis of analogous products, the present method benefits from the distinctive features of totally metal-free catalysis, broad substrate tolerance, specific regioselectivity in transforming C2-H bond, and high atom economy. Therefore, such a synthetic method will reasonably be a practical approach in complementing those already known strategies for the synthesis of structurally diverse and useful 2-picolinamide scaffolds.
  • 加载中
    1. [1]

      (a) Humphrey, J. M.; Chamberlin, A. R. Chem. Rev. 1997, 97, 2243.
      (b) Bode, J. W. Curr. Opin. Drug Discovery Dev. 2006, 9, 765.
      (c) Cupido, T.; Tulla-Puche, J.; Spengler, J.; Albericio, F. Curr. Opin. Drug Discovery Dev. 2007, 10, 768.
      (d) Hudson, D. J. Org. Chem. 1988, 53, 617.
      (e) Ronn, R.; Lampa, A.; Peterson, S. D.; Gossas, T.; A; Danielson, U. H.; Karlen, A.; Sandstrom, A. Bioorg. Med. Chem. 2008, 16, 2955.

    2. [2]

      (a) Haynes, C.; Kirkwood, R. C. Pestic. Sci. 1992, 35, 161.
      (b) Regitano, J. B.; Koskinen, W. C. J. Agric. Food Chem. 2008, 56, 5801.

    3. [3]

      (a) Nakao, Y. Synthesis 2011, 3209.
      (b) Zhang, B.; Zhou, Q.; Chen, R.; Jiang, H. Chin. J. Org. Chem. 2012, 32, 1653 (in Chinese).
      (张斌, 周其忠, 陈仁尔, 蒋华江, 有机化学, 2012, 32, 1653).

    4. [4]

      (a) Minisci, F.; Vismara, E.; Fontana, F. Heterocycles 1989, 28, 489.
      (b) Duncton, M. A. J. MedChemComm 2011, 2, 1135.
      (c) Fujiwara, Y.; Dixon, J. A.; O'Hara, F.; Funder, E. D.; Dixon, D. D.; Rodriguez, R. A.; Baxter, R. D.; Herle, B.; Sach, N.; Collins, M. R.; Ishihara, Y.; Baran, P. S. Nature 2012, 492, 95.

    5. [5]

      (a) Bull, J. A.; Mousseau, J. J.; Pelletier, G.; Charette, A. B. Chem. Rev. 2012, 112, 2642.
      (b) Farrell, R. P.; Elipe, M. V. S.; Bartberger, M. D.; Tedrow, J. S.; Vounatsos, F. Org. Lett. 2013, 15, 168.
      (c) Keith, J. M. J. Org. Chem. 2008, 73, 327.
      (d) Yin, J. J.; Xiang, B. P.; Huffman, M. A.; Raab, C. E.; Davies, I. W. J. Org. Chem. 2007, 72, 4554.
      (e) Londregan, A. T.; Jennings, S.; Wei, L. Q. Org. Lett. 2011, 13, 1840.
      (f) Wengryniuk, S. E.; Weickgenannt, A.; Reiher, C.; Strotman, N. A.; Chen, K.; Eastgate, M. D.; Baran, P. S. Org. Lett. 2013, 15, 792.

    6. [6]

      Foo, K.; Sella, E.; Thomé, I.; Eastgate, M. D.; Baran, P. S. J. Am. Chem. Soc. 2014, 136, 5279.  doi: 10.1021/ja501879c

    7. [7]

      Mete, T. B.; Singh, A.; Bhat, R. G. Tetrahedron Lett. 2017, 58, 4709.  doi: 10.1016/j.tetlet.2017.11.006

    8. [8]

      Han, W.; Jin, F. L.; Zhao, Q.; Du, H. Y.; Yao, L. F. Synlett 2016, 27, 1854.  doi: 10.1055/s-00000083

    9. [9]

      (a) Lagerlund, O.; Larhed, M. J. Comb. Chem. 2006, 8, 4.
      (b) Ren, W.; Yamane, M. J. Org. Chem. 2009, 74, 8332.
      (c) Ren, W.; Yamane, M. J. Org. Chem. 2010, 75, 3017.
      (d) Wannberg, J.; Larhed, M. J. Org. Chem. 2003, 68, 5750.
      (e) Wu, X.; Larhed, M. Org. Lett. 2005, 7, 3327.

    10. [10]

      Gu, Z.-Y.; Ji, S.-J. Acta Chim. Sinica 2018, 76, 347(in Chinese).
       

    11. [11]

      Jiang, H. F.; Liu, B. F.; Li, Y. B.; Wang, A. Z.; Huang, H. W. Org. Lett. 2010, 13, 1028.

    12. [12]

      For reviews: (a) Sun, C.; Shi, Z. Chem. Rev. 2014, 114, 9219.
      (b) Wan, J.-P.; Gao, Y.; Wei, L. Chem. Asian J. 2016, 11, 2092.
      (c) Liu, Y.; Xiong, J.; Wei, L. Chin. J. Org. Chem. 2017, 37, 1667 (in Chinese).
      (刘云云, 熊进, 韦丽, 有机化学, 2017, 37, 1667).
      (d) Xu, F.; Han, W. Chin. J. Org. Chem. 2018, 38, 2519 (in Chinese).
      (徐方宁, 韩维, 有机化学, 2018, 38, 2519).

    13. [13]

      (a) Xie, L.-Y.; Peng, S.; Tan, J.-X.; Sun, R.-X.; Yu, X.; Dai, N.-N.; Tang, Z.-L.; Xu, X.; He, W.-M. ACS Sustainable Chem. Eng. 2018, 6, 16976.
      (b) Hao, W.; Wang, Y.; Miao, J.; Liu, Y. ChemistrySelect 2018, 3, 5194.
      (c) Xie, L.-Y.; Peng, S.; Liu, F.; Yi, J.-Y.; Wang, M.; Tang, Z.; Xu, X.; He, W.-M. Adv. Synth. Catal. 2018, 360, 4259.
      (d) Xie, L.Y.; Peng, S.; Liu, F.; Chen, G.-R.; Xia, W.; Yu, X.; Li, W.-F.; Cao, Z.; He, W.-M. Org. Chem. Front. 2018, 5, 2604.
      (e) Shan, X.-H.; Yang, B.; Zheng, H.-X.; Qu, J.-P.; Kang, Y.-B. Org. Lett. 2018, 20, 7898.
      (f) Wei, W.; Wang, L.; Yue, H.; Bao, P.; Liu, W.; Hu, C.; Yang, D.; Wang, H. ACS Sustainable Chem. Eng. 2018, 6, 17252.
      (g) Zhong, S.; Liu, Y.; Cao, X.; Wan, J.-P. ChemCatChem 2017, 9, 465.
      (h) Guo, Y.; Xiang, Y.; Wei, L.; Wan, J.-P. Org. Lett. 2018, 20, 3971.
      (i) Yang, D.; Li, G.; Xing, C.; Cui, W.; Li, K.; Wei, W. Org. Chem. Front. 2018, 5, 2974.
      (j) Wan, J.-P.; Cao, S.; Hu, C.; Wen, C. Asian J. Org. Chem. 2018, 7, 328.
      (h) Wan, J.-P.; Zhong, S.; Xie, L.; Cao, X.; Liu, Y.; Wei, L. Org. Lett. 2016, 18, 584.
      (l) Ren, Q.; Nie, B.; Zhang, Y.; Zhang, J. Chin. J. Org. Chem. 2018, 38, 2465 (in Chinese).
      (任青云, 聂颷, 张英俊, 张霁, 有机化学, 2018, 38, 2465.)

    14. [14]

      Minisci, F.; Recupero, F.; Punta, C.; Gambarotti, C.; Antonietti, F.; Fontana, F.; Pedulli, G. F. Chem. Commun. 2002, 2496.

  • 加载中
    1. [1]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    2. [2]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    3. [3]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    4. [4]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    5. [5]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    6. [6]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    7. [7]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    8. [8]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    9. [9]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    10. [10]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    11. [11]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    12. [12]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    13. [13]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    14. [14]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    15. [15]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    16. [16]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    17. [17]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    18. [18]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    19. [19]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    20. [20]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

Metrics
  • PDF Downloads(11)
  • Abstract views(882)
  • HTML views(134)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return