Citation: Wang Yuyun, Liu Yunyun. Metal-Free C2-H Aminocarbonylation of Pyridines for the Synthesis of Picolinamides[J]. Acta Chimica Sinica, ;2019, 77(5): 418-421. doi: 10.6023/A19020061 shu

Metal-Free C2-H Aminocarbonylation of Pyridines for the Synthesis of Picolinamides

  • Corresponding author: Liu Yunyun, chemliuyunyun@jxnu.edu.cn
  • Received Date: 11 February 2019
    Available Online: 9 May 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21562024)the National Natural Science Foundation of China 21562024

Figures(2)

  • In this paper, a metal-free catalytic method for synthesis of 2-picolinamide derivatives is reported. Under the promotion of proton acid, simple pyridines react with isocyanides to provide 2-picolinamides by means of the aminocarbonylation of the aryl C-H bond in the C2 position of pyridines. The product formation involves in the electrophilic addition of isocyanide to pyridine ring, hydrolysis and the oxidative aromatization regenerating pyridine ring in the presence of Di-t-butyl peroxide (DTBP) and oxalic acid dihydrate. Control experiments in the optimization section disclose the fact that the proton acid and oxidant are both indispensable for this C-H bond aminocarbonylation reaction. Generally, the synthetic reactions run smoothly under air atmosphere by heating all the substrates and reagents in one-pot at 100℃. The pyridine substrates containing methyl, t-butyl, cyclic dialkyl, methoxyl, halogen substituents at different site of the pyridine ring have displayed fine tolerance to the synthesis of corresponding products with diverse substructures in the pyridine ring. On the other hand, both alkyl and aryl functionalized isocyanides have also been found applicable to this synthetic protocol to provide 2-picolinamides containing correspondingly various N-alkyl and N-aryl fragment. The primary results indicate that the stability of the isocyanide substrate evidently influence the reaction result. The reactions employing relatively more stable 2, 6-dimethylphenyl isocyanide give corresponding products with higher yield than those ones using other isocyanides. Comparing with those reported methods employing transition metal catalyst such as silver or palladium salt to activate the C2-H bond in pyridines for the synthesis of analogous products, the present method benefits from the distinctive features of totally metal-free catalysis, broad substrate tolerance, specific regioselectivity in transforming C2-H bond, and high atom economy. Therefore, such a synthetic method will reasonably be a practical approach in complementing those already known strategies for the synthesis of structurally diverse and useful 2-picolinamide scaffolds.
  • 加载中
    1. [1]

      (a) Humphrey, J. M.; Chamberlin, A. R. Chem. Rev. 1997, 97, 2243.
      (b) Bode, J. W. Curr. Opin. Drug Discovery Dev. 2006, 9, 765.
      (c) Cupido, T.; Tulla-Puche, J.; Spengler, J.; Albericio, F. Curr. Opin. Drug Discovery Dev. 2007, 10, 768.
      (d) Hudson, D. J. Org. Chem. 1988, 53, 617.
      (e) Ronn, R.; Lampa, A.; Peterson, S. D.; Gossas, T.; A; Danielson, U. H.; Karlen, A.; Sandstrom, A. Bioorg. Med. Chem. 2008, 16, 2955.

    2. [2]

      (a) Haynes, C.; Kirkwood, R. C. Pestic. Sci. 1992, 35, 161.
      (b) Regitano, J. B.; Koskinen, W. C. J. Agric. Food Chem. 2008, 56, 5801.

    3. [3]

      (a) Nakao, Y. Synthesis 2011, 3209.
      (b) Zhang, B.; Zhou, Q.; Chen, R.; Jiang, H. Chin. J. Org. Chem. 2012, 32, 1653 (in Chinese).
      (张斌, 周其忠, 陈仁尔, 蒋华江, 有机化学, 2012, 32, 1653).

    4. [4]

      (a) Minisci, F.; Vismara, E.; Fontana, F. Heterocycles 1989, 28, 489.
      (b) Duncton, M. A. J. MedChemComm 2011, 2, 1135.
      (c) Fujiwara, Y.; Dixon, J. A.; O'Hara, F.; Funder, E. D.; Dixon, D. D.; Rodriguez, R. A.; Baxter, R. D.; Herle, B.; Sach, N.; Collins, M. R.; Ishihara, Y.; Baran, P. S. Nature 2012, 492, 95.

    5. [5]

      (a) Bull, J. A.; Mousseau, J. J.; Pelletier, G.; Charette, A. B. Chem. Rev. 2012, 112, 2642.
      (b) Farrell, R. P.; Elipe, M. V. S.; Bartberger, M. D.; Tedrow, J. S.; Vounatsos, F. Org. Lett. 2013, 15, 168.
      (c) Keith, J. M. J. Org. Chem. 2008, 73, 327.
      (d) Yin, J. J.; Xiang, B. P.; Huffman, M. A.; Raab, C. E.; Davies, I. W. J. Org. Chem. 2007, 72, 4554.
      (e) Londregan, A. T.; Jennings, S.; Wei, L. Q. Org. Lett. 2011, 13, 1840.
      (f) Wengryniuk, S. E.; Weickgenannt, A.; Reiher, C.; Strotman, N. A.; Chen, K.; Eastgate, M. D.; Baran, P. S. Org. Lett. 2013, 15, 792.

    6. [6]

      Foo, K.; Sella, E.; Thomé, I.; Eastgate, M. D.; Baran, P. S. J. Am. Chem. Soc. 2014, 136, 5279.  doi: 10.1021/ja501879c

    7. [7]

      Mete, T. B.; Singh, A.; Bhat, R. G. Tetrahedron Lett. 2017, 58, 4709.  doi: 10.1016/j.tetlet.2017.11.006

    8. [8]

      Han, W.; Jin, F. L.; Zhao, Q.; Du, H. Y.; Yao, L. F. Synlett 2016, 27, 1854.  doi: 10.1055/s-00000083

    9. [9]

      (a) Lagerlund, O.; Larhed, M. J. Comb. Chem. 2006, 8, 4.
      (b) Ren, W.; Yamane, M. J. Org. Chem. 2009, 74, 8332.
      (c) Ren, W.; Yamane, M. J. Org. Chem. 2010, 75, 3017.
      (d) Wannberg, J.; Larhed, M. J. Org. Chem. 2003, 68, 5750.
      (e) Wu, X.; Larhed, M. Org. Lett. 2005, 7, 3327.

    10. [10]

      Gu, Z.-Y.; Ji, S.-J. Acta Chim. Sinica 2018, 76, 347(in Chinese).
       

    11. [11]

      Jiang, H. F.; Liu, B. F.; Li, Y. B.; Wang, A. Z.; Huang, H. W. Org. Lett. 2010, 13, 1028.

    12. [12]

      For reviews: (a) Sun, C.; Shi, Z. Chem. Rev. 2014, 114, 9219.
      (b) Wan, J.-P.; Gao, Y.; Wei, L. Chem. Asian J. 2016, 11, 2092.
      (c) Liu, Y.; Xiong, J.; Wei, L. Chin. J. Org. Chem. 2017, 37, 1667 (in Chinese).
      (刘云云, 熊进, 韦丽, 有机化学, 2017, 37, 1667).
      (d) Xu, F.; Han, W. Chin. J. Org. Chem. 2018, 38, 2519 (in Chinese).
      (徐方宁, 韩维, 有机化学, 2018, 38, 2519).

    13. [13]

      (a) Xie, L.-Y.; Peng, S.; Tan, J.-X.; Sun, R.-X.; Yu, X.; Dai, N.-N.; Tang, Z.-L.; Xu, X.; He, W.-M. ACS Sustainable Chem. Eng. 2018, 6, 16976.
      (b) Hao, W.; Wang, Y.; Miao, J.; Liu, Y. ChemistrySelect 2018, 3, 5194.
      (c) Xie, L.-Y.; Peng, S.; Liu, F.; Yi, J.-Y.; Wang, M.; Tang, Z.; Xu, X.; He, W.-M. Adv. Synth. Catal. 2018, 360, 4259.
      (d) Xie, L.Y.; Peng, S.; Liu, F.; Chen, G.-R.; Xia, W.; Yu, X.; Li, W.-F.; Cao, Z.; He, W.-M. Org. Chem. Front. 2018, 5, 2604.
      (e) Shan, X.-H.; Yang, B.; Zheng, H.-X.; Qu, J.-P.; Kang, Y.-B. Org. Lett. 2018, 20, 7898.
      (f) Wei, W.; Wang, L.; Yue, H.; Bao, P.; Liu, W.; Hu, C.; Yang, D.; Wang, H. ACS Sustainable Chem. Eng. 2018, 6, 17252.
      (g) Zhong, S.; Liu, Y.; Cao, X.; Wan, J.-P. ChemCatChem 2017, 9, 465.
      (h) Guo, Y.; Xiang, Y.; Wei, L.; Wan, J.-P. Org. Lett. 2018, 20, 3971.
      (i) Yang, D.; Li, G.; Xing, C.; Cui, W.; Li, K.; Wei, W. Org. Chem. Front. 2018, 5, 2974.
      (j) Wan, J.-P.; Cao, S.; Hu, C.; Wen, C. Asian J. Org. Chem. 2018, 7, 328.
      (h) Wan, J.-P.; Zhong, S.; Xie, L.; Cao, X.; Liu, Y.; Wei, L. Org. Lett. 2016, 18, 584.
      (l) Ren, Q.; Nie, B.; Zhang, Y.; Zhang, J. Chin. J. Org. Chem. 2018, 38, 2465 (in Chinese).
      (任青云, 聂颷, 张英俊, 张霁, 有机化学, 2018, 38, 2465.)

    14. [14]

      Minisci, F.; Recupero, F.; Punta, C.; Gambarotti, C.; Antonietti, F.; Fontana, F.; Pedulli, G. F. Chem. Commun. 2002, 2496.

  • 加载中
    1. [1]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    2. [2]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    3. [3]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    4. [4]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    5. [5]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    6. [6]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    7. [7]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    8. [8]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    9. [9]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    10. [10]

      Lei Shu Zimin Duan Yushen Kang Zijian Zhao Hong Wang Lihua Zhu Hui Xiong Nan Wang . An Exploration of the CO2-Involved Carbon Cycle World. University Chemistry, 2024, 39(5): 144-153. doi: 10.3866/PKU.DXHX202309084

    11. [11]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    12. [12]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    13. [13]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    14. [14]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    15. [15]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    16. [16]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    17. [17]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    18. [18]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    19. [19]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    20. [20]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

Metrics
  • PDF Downloads(13)
  • Abstract views(943)
  • HTML views(149)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return