Citation: Wu Wenjun, Xin Chenghao, Pang Zhihan, Xu Liang, Li Chen. Dimethylammonium Iodide: Boosting Photocurrent for Dye-sensitized Solar Cells with Perovskite Precursors Electrolyte[J]. Acta Chimica Sinica, ;2019, 77(6): 545-550. doi: 10.6023/A19020058 shu

Dimethylammonium Iodide: Boosting Photocurrent for Dye-sensitized Solar Cells with Perovskite Precursors Electrolyte

  • Corresponding author: Wu Wenjun, wjwu@ecust.edu.cn
  • Received Date: 3 February 2019
    Available Online: 9 June 2019

    Fund Project: the Scientific Committee of Shanghai 18160723400the National Natural Science Foundation of China 21676087Project supported by the National Natural Science Foundation of China (No. 21676087) and the Scientific Committee of Shanghai (No. 18160723400)

Figures(7)

  • As a typical representative of the third-generation solar cell, the dye-sensitized solar cells (DSSCs) with iodine electrolyte have attracted much attention due to its low fabrication cost, simple assembly process and relatively high photoelectric conversion efficiency (PCE). However, all studies about electrolytes are essentially related to redox couples of iodine, cobalt and copper with different chemical valences by far. Based on above systems, it is difficult to continually enhance the photocurrent of DSSCs due to the energy level tunability limitation between the redox potential and the dye regeneration. However, the study of perovskite precursor (PbI2 and CH3NH3I) as dye-sensitized solar cell electrolyte has just started, and its specific mechanism is still unclear. As the newly-presented electrolyte of dye-sensitized solar cells, its development bottleneck of photocurrent and photovoltage is an urgent issue to be solved. Herein, dimethylammonium iodide (DMAI) was introduced as a high-efficiency additive for the perovskite precursors electrolyte and the photocurrent is sharply increased from 12.85 mA·cm-2 to 19.19 mA·cm-2. The electron transfer process was preliminary studied in this system via chemical capacitance, electron lifetime, charge transfer impedance, and Tafel curve. The Tafel curve test is based on the dummy cell with Pt|electrolyte|Pt device structure, and the others on the completed cells. In particular, the results of chemical capacitance show that the addition of DMAI obviously leads to the upward shift of the TiO2 conduction band. It is found that the increase in photocurrent is attributed to the inhibition of the electron recombination caused by unbalanced carriers due to the upward shift of the TiO2 semiconductor conduction band. By the modulation action of tert-butylpyridine (TBP), the photoelectric conversion efficiency was increased to 8.46% over the iodine system. It lays a solid foundation for the expansion of the dye-sensitized solar cell electrolyte system, the sustainable improvement of its performance and future application.
  • 加载中
    1. [1]

      Wang, P.; Yang, L.; Wu, H.; Cao, Y. M.; Zhang, J.; Xu, N. S.; Chen, S.; Decoppet, J. D.; Zakeeruddin, S. M.; Grätzel, M. Joule 2018, 2, 1.  doi: 10.1016/j.joule.2017.10.014

    2. [2]

      Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B. F. E.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, K.; Grätzel, M. Nat. Chem. 2014, 6, 242.  doi: 10.1038/nchem.1861

    3. [3]

      Kakiage, K.; Aoyama, Y.; Yano, T.; Oya, K.; Fujisawa, J.; Hanaya, M. Chem. Commun. 2015, 51, 15894.  doi: 10.1039/C5CC06759F

    4. [4]

      Yao, Z. Y.; Zhang, M.; Wu, H.; Yang, L.; Li, R. Z.; Wang, P. J. Am. Chem. Soc. 2015, 137, 3799.  doi: 10.1021/jacs.5b01537

    5. [5]

      Yella, A.; Mai, C. L.; Zakeeruddin, S. M.; Chang, S. N.; Hsieh, C. H.; Yeh, C. Y.; Grätzel, M. Angew. Chem., Int. Ed. 2014, 53, 2973.  doi: 10.1002/anie.v53.11

    6. [6]

      Chandiran, A. K.; Zakeeruddin, S. M.; Humphry-Baker, R.; Nazeeruddin, M. K.; Grätzel, M.; Sauvage, F. ChemPhysChem 2017, 18, 2724.  doi: 10.1002/cphc.201700486

    7. [7]

      Liu, Y. H.; Cao, Y. M.; Zhang, W. W.; Stojanovic, M.; Dar, M. I.; Péchy, P.; Saygili, Y.; Hagfeldt, A.; Zakeeruddin, S. M.; Grätzel, M. Angew. Chem., Int. Ed. 2018, 57, 14125.  doi: 10.1002/anie.201808609

    8. [8]

      Cui, X. J.; Xiao, J. P.; Wu, Y. H.; Du, P. P.; Si, R.; Yang, H. X.; Tian, H. F.; Li, J. Q.; Zhang, W. H.; Deng, D. H.; Bao, X. H. Angew. Chem., Int. Ed. 2016, 55, 6708.  doi: 10.1002/anie.201602097

    9. [9]

      Zheng, X. J.; Deng, J.; Wang, N.; Deng, D. H.; Zhang, W. H.; Bao, X. H.; Li, C. Angew. Chem., Int. Ed. 2014, 53, 7023.  doi: 10.1002/anie.201400388

    10. [10]

      Liu, T.; Yu, K.; Gao, L. N.; Chen, H.; Wang, N.; Hao, L. H.; Li, T. X.; He, H. C.; Guo, Z. H. J. Mater. Chem. A 2017, 5, 17848.  doi: 10.1039/C7TA05123A

    11. [11]

      Yun, S.; Hagfeldt, A.; Ma, T. L. Adv. Mater. 2014, 26, 6210.  doi: 10.1002/adma.201402056

    12. [12]

      Tang, Q. W.; Zhang, H. H.; Meng, Y. Y.; He, B. L.; Yu, L. M. Angew. Chem., Int. Ed. 2015, 54, 11448.  doi: 10.1002/anie.201505339

    13. [13]

      Ren, H.; Shao, H.; Zhang, L. J.; Guo, D.; Jin, Q.; Yu, R. B.; Wang, L.; Li, Y. L.; Wang, Y.; Zhao, H. J.; Wang, D. Adv. Energy Mater. 2015, 5, 1500296-1.

    14. [14]

      Zhu, K.; Neale, N. R.; Miedaner, A.; Frank, A. J. Nano Lett. 2007, 7, 69.  doi: 10.1021/nl062000o

    15. [15]

      Mishra, A.; Fischer, M. K. R.; Bäuerle, P. Angew. Chem., Int. Ed. 2009, 48, 2474.  doi: 10.1002/anie.v48:14

    16. [16]

      Xie, Y. S.; Tang, Y. Y.; Wu, W. J.; Wang, Y. Q.; Liu, J. C.; Li, X.; Tian, H.; Zhu, W. H. J. Am. Chem. Soc. 2015, 137, 14055.  doi: 10.1021/jacs.5b09665

    17. [17]

      Wang, H. X.; Li, H.; Xue, B. F.; Wang, Z. X.; Meng, Q. B.; Chen, L. Q. J. Am. Chem. Soc. 2005, 127, 6394.  doi: 10.1021/ja043268p

    18. [18]

      Yella, A.; Mathew, S.; Aghazada, S.; Comte, P.; Grätzel, M.; Nazeeruddin, M. K. J. Mater. Chem. C 2017, 5, 2833.  doi: 10.1039/C6TC05640G

    19. [19]

      Higashino, T.; Kurumisawa, Y.; Cai, N.; Fujimori, Y.; Tsuji, Y.; Nimura, S.; Packwood, D. M.; Park, J.; Imahori, H. ChemSusChem 2017, 10, 3347.  doi: 10.1002/cssc.201701157

    20. [20]

      Gu, A.; Xiang, W. C.; Wang, T. S.; Gu, S. X.; Zhao, X. J. Solar Energy 2017, 147, 126.  doi: 10.1016/j.solener.2017.03.045

    21. [21]

      Freitag, M.; Teuscher, J.; Saygili, Y.; Zhang, X. Y.; Giordano, F.; Liska, P.; Hua, J. L.; Zakeeruddin, S. M.; Moser, J. E.; Grätzel, M.; Hagfeldt, A. Nat. Photonics 2017, 11, 372.  doi: 10.1038/nphoton.2017.60

    22. [22]

      Cao, Y. M.; Saygili, Y.; Ummadisingu, A.; Teuscher, J.; Luo, J. S.; Pellet, N.; Giordano, F.; Zakeeruddin, S. M.; Moser, J. E.; Freitag, M.; Hagfeldt, A.; Grätzel, M. Nat. Commun. 2017, 8, 15390-1.

    23. [23]

      Zhang, W. W.; Wu, Y. Z.; Bahng, H. W.; Cao, Y. M.; Yi, C. Y.; Saygili, Y.; Luo, J. S.; Liu, Y. H.; Kavan, L.; Moser, J. E.; Hagfeldt, A.; Tian, H.; Zakeeruddin, S. M.; Zhu, W. H.; Grätzel, M. Energy Environ. Sci. 2018, 11, 1779.  doi: 10.1039/C8EE00661J

    24. [24]

      Chen, S.; Hou, Y.; Chen, H.; Richter, M.; Guo, F.; Kahmann, S.; Tang, X.; Stubhan, T.; Zhang, H.; Li, N.; Gasparini, N.; Quiroz, C. O. R.; Khanzada, L. S.; Matt, G. J.; Osvet, A.; Brabec, C. J. Adv. Energy Mater. 2016, 6, 1600132-1.

    25. [25]

      Jiang, L. L.; Wang, Z. K.; Li, M.; Li, C. H.; Fang, P. F.; Liao, L. S. Solar RRL 2018, 1800149-1.

    26. [26]

      Luo, D.; Yang, W. Q.; Wang, Z. P.; Sadhanala, A.; Hu, Q.; Su, R.; Shivanna, R.; Trindade, G. F.; Watts, J. F.; Xu, Z. J.; Liu, T. H.; Chen, K.; Ye, F. J.; Wu, P.; Zhao, L. C.; Wu, J.; Tu, Y. G.; Zhang, Y. F.; Yang, X. Y.; Zhang, W.; Friend, R. H.; Gong, Q. H.; Snaith, H. J.; Zhu, R. Science 2018, 360, 1442.  doi: 10.1126/science.aap9282

    27. [27]

      Ryu, U.; Jee, S.; Park, J. S.; Han, I. K.; Lee, J. H.; Park, M.; Choi, K. M. ACS Nano 2018, 12, 4968.  doi: 10.1021/acsnano.8b02079

    28. [28]

      Deng, Y.; Zheng, X.; Bai, Y.; Wang, Q.; Zhao, J.; Huang, J. Nat. Energy 2018, 3, 560.  doi: 10.1038/s41560-018-0153-9

    29. [29]

      Li, C. P.; Lv, X. D.; Cao, J.; Tang, Y. Chin. J. Chem. 2019, 37, 30.  doi: 10.1002/cjoc.v37.1

    30. [30]

      Yan, K. R.; Liu, Z. X.; Li, X.; Chen, J. H.; Chen, H. Z.; Li, C. Z. Org. Chem. Front. 2018, 5, 2845.  doi: 10.1039/C8QO00788H

    31. [31]

      Yang, Y.; Chen, T.; Pan, D. Q.; Zhang, Z.; Guo, X. Y. Acta Chim. Sinica 2018, 76, 681(in Chinese).  doi: 10.7503/cjcu20170596
       

    32. [32]

      Wu, M. M.; Liu, S. Q.; Chen, H.; Wei, X. H.; Li, M. Y.; Yang, Z. B.; Ma, X. D. Acta Chim. Sinica 2018, 76, 49(in Chinese).  doi: 10.3866/PKU.WHXB201707041
       

    33. [33]

      Sun, W. H.; Li, Y. L.; Yan, W. B.; Peng, H. T.; Ye, S. Y.; Rao, H. X.; Zhao, Z. R.; Liu, Z. W.; Bian, Z. Q.; Huang, C. H. Chin. J. Chem. 2017, 35, 687.  doi: 10.1002/cjoc.v35.5

    34. [34]

      Li, C. P.; Lv, X. D.; Cao, J.; Tang, Y. Chin. J. Chem. 2019, 37, 30.  doi: 10.1002/cjoc.v37.1

    35. [35]

      Yan, K. R.; Liu, Z. X.; Li, X.; Chen, J. H.; Chen, H. Z.; Li, C. Z. Org. Chem. Front. 2018, 5, 2845.  doi: 10.1039/C8QO00788H

    36. [36]

      Zhang, D.; Cui, B. B.; Zhou, C.; Li, L.; Chen, Y.; Zhou, N.; Xu, Z.; Li, Y.; Zhou, H.; Chen, Q. Chem. Commun. 2017, 53, 10548.  doi: 10.1039/C7CC05590K

    37. [37]

      Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050.  doi: 10.1021/ja809598r

    38. [38]

      Im, J. H.; Lee, C. R.; Lee, J. W.; Park, S. W.; Park, N. G. Nanoscale 2011, 3, 4088.  doi: 10.1039/c1nr10867k

    39. [39]

      Wang, Q.; Yun, J. H.; Zhang, M.; Chen, H. J.; Chen, Z. G.; Wang, L. Z. J. Mater. Chem. A 2014, 2, 10355.  doi: 10.1039/c4ta01105h

    40. [40]

      Yang, J. B.; Ganesan, P.; Teuscher, J.; Moehl, T.; Kim, Y. J.; Yi, C. Y.; Comte, P.; Pei, K.; Holcombe, T. W.; Nazeeruddin, M. K.; Hua, J. L.; Zakeeruddin, S. M.; Tian, H.; Grätzel, M. J. Am. Chem. Soc. 2014, 136, 5722.  doi: 10.1021/ja500280r

    41. [41]

      Yella, A.; Lee, H. W.; Tsao, H. N.; Yi, C. Y.; Chandiran, A. K.; Nazeeruddin, K.; Diau, E. W. G.; Yeh, C. Y.; Zakeeruddin, S. M.; Grätzel, M. Science 2011, 334, 629.  doi: 10.1126/science.1209688

    42. [42]

      Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B. F. E.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, K.; Grätzel, M. Nat. Chem. 2014, 6, 242.  doi: 10.1038/nchem.1861

    43. [43]

      Li, X. M.; Bai, J. W.; Zhou, B.; Yuan, X. F.; Zhang, X.; Liu, L. Chem. Eur. J. 2018, 24, 11444.  doi: 10.1002/chem.v24.44

    44. [44]

      Jin, B. B.; Zhang, G. Q.; Kong, S. Y.; Quan, X.; Huang, H. S.; Liu, Y.; Zeng, J. H.; Wang, Y. F. J. Mater. Chem. C 2018, 6, 6823.  doi: 10.1039/C8TC02067A

    45. [45]

      Duan, Y.; Tang, Q.; Chen, Y.; Zhao, Z.; Lv, Y.; Hou, M.; Yang, P.; He, B.; Yu, L. J. Mater. Chem. A 2015, 3, 5368.  doi: 10.1039/C4TA06393G

    46. [46]

      Xing, P.; Robertson, G. P.; Guiver, M. D.; Mikhailenko, S. D.; Wang, K.; Kaliaguine, S. J. Membr. Sci. 2004, 229, 95.  doi: 10.1016/j.memsci.2003.09.019

    47. [47]

      Boschloo, G.; Häggman, L.; Hagfeldt, A. J. Phys. Chem. B 2006, 110, 13144.  doi: 10.1021/jp0619641

  • 加载中
    1. [1]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    2. [2]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    3. [3]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    4. [4]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    5. [5]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    6. [6]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    7. [7]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    8. [8]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    9. [9]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    10. [10]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    11. [11]

      Xiaoyan Wang Chao Wang Dongmei Dai Yanling Geng Hongtao Gao . Design of Ideological and Political Education for the Experiment on Calcium Content Determination in Calcium Supplements. University Chemistry, 2024, 39(2): 162-167. doi: 10.3866/PKU.DXHX202307074

    12. [12]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    13. [13]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    14. [14]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    15. [15]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    16. [16]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    17. [17]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    18. [18]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    19. [19]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    20. [20]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

Metrics
  • PDF Downloads(27)
  • Abstract views(950)
  • HTML views(160)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return