Citation: Song Xuexi, Li Jicheng, Li Zhaohui, Li Xifei, Ding Yanhuai, Xiao Qizhen, Lei Gangtie. Effect of K-Doping on the Sodium-storage Performance of Sodium Vanadate Nanoplates[J]. Acta Chimica Sinica, ;2019, 77(7): 625-633. doi: 10.6023/A19010040 shu

Effect of K-Doping on the Sodium-storage Performance of Sodium Vanadate Nanoplates

  • Corresponding author: Li Zhaohui, lzh69@xtu.edu.cn Li Xifei, xfli2011@hotmail.com
  • Received Date: 23 January 2019
    Available Online: 1 July 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 51572194, 51672189), and the Hunan Provincial Natural Science Foundation (Nos. 2018JJ2386, 2018JJ2393)the National Natural Science Foundation of China 51672189the National Natural Science Foundation of China 51572194the Hunan Provincial Natural Science Foundation 2018JJ2393the Hunan Provincial Natural Science Foundation 2018JJ2386

Figures(6)

  • Na-ion batteries with lower cost than Li-ion batteries would be developed to large-scale energy-storage device to store solar and wind energies. However, large radius renders Na+ ions to insert into/extract out the layered transition metal oxides (LTMOs) sluggishly. To improve the intercalation dynamics of Na+ ions, the interlayer spacing of crystals has to be expanded for those LTMOs that are capable of fast lithiation and delithiation. Herein, a LTMO based on vanadium is firstly doped with larger K+ ions to expand the interlayer spacing to yield K+-doped sodium vanadate (Na5KxV12O32) cathode material by a hydrothermal method at 200℃ for 24 h followed by calcination at 500℃ for 3 h. The samples were characterized by scanning electron microscope (SEM)/transmission electron microscope (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) technologies. Effect of the doping amount of K+ on the structure and sodium-storage performance of the sample was studied in detail. The synthesized materials display nanoplate morphology viewing from the TEM images. K+ ions are doped into the interlayer of the sodium vanadate crystallites, which is proved by analysis of the XRD patterns and XPS spectra. Expanded interlayer spacing favors Na+ ions' intercalation and deintercalation between the[V3O8]- layers, which is testified by the chemical diffusion coefficient of cathodes, thus enhancing the rate capability. On the other hand, the chemically pre-intercalated K+ ions are pinned in the crystallites during insertion and extraction of Na+ ions and act as pillars to stabilize the layered structure, improving the cycliability of the cathode. However, excessive doping of K+ leads to a discounted rate capability of the cathode, suggesting an optimized amount of K+ doping into the crystal. The results from galvanostatic charge-discharge tests indicate that the obtained NVO(3K) sample, in which 0.118 mol of K+ ions are doped into per mol of Na5V12O32, presents the best electrochemical performance among the various samples. It can deliver the maximum capacities of 169, 160, 148, 132, 98 and 69 mAh·g-1 at the rates of 0.1C, 0.2C, 0.5C, 1C, 3C and 10C after activated for several times over the voltage window of 4.0~1.5 V (vs. Na+/Na), respectively. Even run at 3C rate, it can retain 93.0% of the maximum capacity after 1000 cycles, exhibiting excellent rate capability and stable cycliability. The results suggest that doping of K+ ions into the interlayer of crystallites can significantly improving the rate capability as well as cycling performance of the obtained Na5V12O32. Our investigation demonstrates that design of K+-doped sodium vanadate cathode materials is beneficial for harvesting superior performance, of which the Na5K0.118V12O32 nanoplates can be developed into a novel cathode material for sodium-ion batteries in the future.
  • 加载中
    1. [1]

      Xiang, X. D.; Lu, Y. Y.; Chen, J. Acta Chim. Sinica 2017, 75, 154(in Chinese).
       

    2. [2]

      Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Chem. Rev. 2014, 114, 11636.  doi: 10.1021/cr500192f

    3. [3]

      Ni, J. F.; Fu, S.; Yuan, Y. F.; Ma, L.; Jiang, Y.; Li, L.; Lu, J. Adv. Mater. 2018, 30, 1704337.  doi: 10.1002/adma.201704337

    4. [4]

      Chen, J.; Li, L.; Wu, L.; Yao, Q.; Yang, H.; Liu, Z.; Xia, L.; Chen, Z.; Duan, J.; Zhong, S. J. Power Sources 2018, 406, 110.  doi: 10.1016/j.jpowsour.2018.10.058

    5. [5]

      Bai, Q.; Yang, L. F.; Chen, H. L.; Mo, Y. F. Adv. Energy Mater. 2018, 8, 1702998.  doi: 10.1002/aenm.201702998

    6. [6]

      Fang, Y. J.; Chen, Z. X.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Acta Phys.-Chim. Sin. 2017, 33, 211(in Chinese).  doi: 10.3866/PKU.WHXB201610111

    7. [7]

      Lu, Y. X.; Zhao, C. L.; Rong, X. H.; Chen, L. Q.; Hu, Y. S. Acta Phys. Sin. 2018, 67, 120601(in Chinese).
       

    8. [8]

      Rong, X. H.; Liu, J.; Hu, E. Y.; Liu, Y. J.; Wang, Y.; Wu, J. P.; Yu, X. Q.; Page, K. A.; Hu, Y. S.; Yang, W. L.; Li, H.; Yang, X. Q.; Chen, L. Q.; Huang, X. J. Joule 2018, 2, 125.  doi: 10.1016/j.joule.2017.10.008

    9. [9]

      Wang, W. J.; Zhu, W. H.; Zhang, Y. J.; Liu, Y. J.; Zhang, Q.; Fu, L. Chin. J. Chem. 2018, 36, 866.  doi: 10.1002/cjoc.v36.9

    10. [10]

      Wang, L.; Yang, G. R.; Wang, J. N.; Wang, S. L.; Peng, S. J.; Yan, W. Acta Chim. Sinica 2018, 76, 666(in Chinese).  doi: 10.3969/j.issn.0253-2409.2018.06.004
       

    11. [11]

      Li, P.; Liu, J.; Sun, W.; Tao, Z.; Chen, J. Acta Chim. Sinica 2018, 76, 286(in Chinese).  doi: 10.3866/PKU.WHXB201708172
       

    12. [12]

      Cao, X. Y.; Yang, Q.; Zhu, L. M.; Xie, L. L. Ionics 2018, 24, 1.  doi: 10.1007/s11581-017-2338-9

    13. [13]

      Lu, Y. K.; Wu, J.; Liu, J.; Lei, M.; Tang, S. S.; Lu, P. J.; Yang, L. Y.; Yang, H. R.; Yang, Q. ACS Appl. Mater. Interfaces 2015, 7, 17433.  doi: 10.1021/acsami.5b04827

    14. [14]

      Cai, Y.; Zhou, J.; Fang, G.; Cai, G.; Pan, A.; Liang, S. J. Power Sources 2016, 328, 241.  doi: 10.1016/j.jpowsour.2016.08.016

    15. [15]

      Cai, Y. S.; Zhou, J.; Fang, G. Z.; Cai, G. M.; Pan, A. Q.; Liang, S. Q. RSC Adv. 2017, 7, 29481.  doi: 10.1039/C7RA04388K

    16. [16]

      Kang, H. Y.; Liu, Y. C.; Shang, M. H.; Lu, T. Y.; Wang, Y. J.; Jiao, L. F. Nanoscale 2015, 7, 9261.  doi: 10.1039/C5NR02064F

    17. [17]

      Lu, Y. K.; Su, N.; Cheng, L. Z.; Liu, J.; Yang, L. Y.; Yang, H. R.; Yang, Q.; Li, S.; Min, J.; Lei, M. Mater. Lett. 2016, 183, 346.  doi: 10.1016/j.matlet.2016.07.128

    18. [18]

      Mei, P.; Wu, X. L.; Xie, H. M. Sun, L. Q.; Zeng, Y. P.; Zhang, J. P.; Tai, L. H.; Guo, X.; Cong, L.; Ma, S. C.; Yao, C.; Wang, R. C. RSC Adv. 2014, 4, 25494.  doi: 10.1039/C4RA02269F

    19. [19]

      Sun, D.; Xu, G. Q.; Wang, H. Y.; Zeng, X. G.; Ma, Y.; Tang, Y. G.; Liu, Y. N.; Pan, Y. F. Electrochim. Acta 2015, 157, 211.  doi: 10.1016/j.electacta.2015.01.081

    20. [20]

      Hu, P.; Zhu, T.; Wang, X. P.; Wei, X. J.; Yan, M. Y.; Li, J. T.; Luo, W.; Yang, W.; Zhang, W. C.; Zhou, L.; Zhou, Z. Q.; Mai, L. Q. Nano Lett. 2018, 18, 1758.  doi: 10.1021/acs.nanolett.7b04889

    21. [21]

      Avansi, W.; Maia, L. J. Q.; Mourão, H. A. J. L.; Ribeiro, C. J. Alloys Compd. 2018, 731, 1119.  doi: 10.1016/j.jallcom.2017.10.121

    22. [22]

      Cao, L. F.; Chen, L.; Huang, Z.; Kuang, Y.; Zhou, H.; Chen, Z. ChemElectroChem 2016, 3, 122.  doi: 10.1002/celc.v3.1

    23. [23]

      Dong, Y. F.; Li, S.; Zhao, K. N.; Han, C. H.; Chen, W.; Wang, B. L.; Wang, L.; Xu, B.; Wei, Q. L.; Zhang, L.; Xu, X.; Mai, L. Q. Energy Environ. Sci. 2015, 8, 1267.  doi: 10.1039/C5EE00036J

    24. [24]

      Yuan, S.; Liu, Y. B.; Xu, D.; Ma, D. L.; Wang, S.; Yang, X. H.; Cao, Z. Y.; Zhang, X. B. Adv. Sci. 2015, 2, 1400018.  doi: 10.1002/advs.201400018

    25. [25]

      Cai, Y. S.; Liu, F.; Luo, Z. G.; Fang, G. Z.; Zhou, J.; Pan, A. Q.; Liang, S. Q. Energy Storage Materials 2018, 13, 168.  doi: 10.1016/j.ensm.2018.01.009

    26. [26]

      Takeda, T.; Taniki, R.; Masuda, A.; Honma, I.; Akutagawa, T. J. Power Sources 2016, 328, 228.  doi: 10.1016/j.jpowsour.2016.08.022

    27. [27]

      Radwan, A.; Liu, Y. L.; Qi, Y. Y.; Jin, W.; Nguyen, V. T.; Yang, X.; Yang, S.; Chen, W. Mater. Res. Bull. 2018, 97, 24.  doi: 10.1016/j.materresbull.2017.08.047

    28. [28]

      Zhao, Y.; Wang, L. P.; Sougrati, M. T.; Feng, Z. X.; Leconte, Y.; Fisher, A.; Srinivasan, M.; Xu, Z. C. Adv. Energy Mater. 2017, 7, 1601424.  doi: 10.1002/aenm.201601424

    29. [29]

      Wang, F. X.; Wu, X. W.; Li, C. Y.; Zhu, Y. S.; Fu, L. Y.; Wu, Y. P.; Liu, X. Energy Environ. Sci. 2016, 9, 3570.  doi: 10.1039/C6EE02070D

    30. [30]

      Wan, F.; Zhang, L. L.; Dai, X.; Wang, X. Y.; Niu, Z. Q.; Chen, J. Nat. Commun. 2018, 9, 1656.  doi: 10.1038/s41467-018-04060-8

    31. [31]

      Li, F.; Zhou, Z. Small 2018, 14, 1702961.  doi: 10.1002/smll.v14.6

    32. [32]

      Wang, L.; Sun, Y. G.; Hu, L. L.; Piao, J. Y.; Guo, J.; Manthiram, A.; Ma, J.; Cao, A. M. J. Mater. Chem. A 2017, 5, 8752.  doi: 10.1039/C7TA00880E

    33. [33]

      Guo, X.; Fang, G. Z.; Zhang, W. Y.; Zhou, J.; Shan, L. T.; Wang, L. B.; Wang, C.; Lin, T. Q.; Tang, Y.; Liang, S. Q. Adv. Energy Mater. 2018, 8, 1801819.  doi: 10.1002/aenm.v8.27

    34. [34]

      Xiao, F.; Song, X.; Li, Z.; Zhang, H.; Zhang, L.; Lei, G.; Xiao, Q.; Hu, Z.; Ding, Y. J. Mater. Chem. A 2017, 5, 17432.  doi: 10.1039/C7TA02761C

    35. [35]

      Liu, L.; Qi, X.; Hu, Y.; Chen, L.; Huang, X. Acta Chim. Sinica 2017, 75, 218(in Chinese).
       

    36. [36]

      Rozier, P.; Galy, J. J. Solid State Chem. 1997, 134, 294.  doi: 10.1006/jssc.1997.7559

    37. [37]

      Hartung, S.; Bucher, N.; Franklin, J. B.; Wise, A. M.; Lim, L. Y.; Chen, H.-Y.; Weker, J. N.; Michel-Beyerle, M.-E.; Toney, M. F.; Srinivasan, M. Adv. Energy Mater. 2016, 6, 1502336.  doi: 10.1002/aenm.201502336

    38. [38]

      Kumagai, N.; Yu, A.; West, K. J. Appl. Electrochem. 1997, 27, 953.  doi: 10.1023/A:1018457820021

    39. [39]

      Song, H. Q.; Liu, C. F.; Zhang, C. K.; Cao, G. Z. Nano Energy 2016, 22, 1.  doi: 10.1016/j.nanoen.2016.02.004

    40. [40]

      Uchaker, E.; Jin, H. G.; Yi, P.; Cao, G. Z. Chem. Mater. 2015, 27, 7082.  doi: 10.1021/acs.chemmater.5b02935

    41. [41]

      Song, X.; Li, J.; Li, Z.; Xiao, Q.; Lei, G.; Hu, Z.; Ding, Y.; Sari, H. M. K.; Li, X. ACS Appl. Mater. Interfaces 2019, 11, 10631.  doi: 10.1021/acsami.8b20494

    42. [42]

      Peng, C.; Xiao, F.; Yang, J.; Li, Z.; Lei, G.; Xiao, Q.; Ding, Y.; Hu, Z. Electrochim. Acta 2016, 192, 216.  doi: 10.1016/j.electacta.2016.01.195

    43. [43]

      He, H.; Jin, G.; Wang, H.; Huang, X.; Chen, Z.; Sun, D.; Tang, Y. J. Mater. Chem. A 2014, 2, 3563.  doi: 10.1039/c3ta14486k

    44. [44]

      Ko, Y. W.; Teh, P. F.; Pramana, S. S.; Wong, C. L.; Su, T.; Li, L.; Madhavi, S. ChemElectroChem 2015, 2, 837.  doi: 10.1002/celc.v2.6

    45. [45]

      Haynes, W. M. CRC-Handbook-of-Chemistry-and-Physics (97th Edition), 2016~2017, CRC Press.

    46. [46]

      Yao, X.; Zhao, Y.; Castro, F. A.; Mai, L. ACS Energy Lett. 2019, 4, 771.  doi: 10.1021/acsenergylett.8b02555

    47. [47]

      Meng, J.; Liu, Z.; Niu, C.; Xu, X.; Liu, X.; Zhang, G.; Wang, X.; Huang, M.; Yu, Y.; Mai, L. J. Mater. Chem. A 2016, 4, 4893.  doi: 10.1039/C6TA00556J

    48. [48]

      Thamodaran, P.; Kesavan, T.; Vivekanantha, M.; Senthilkumar, B.; Barpanda, P.; Sasidharan, M. ACS Appl. Energy Mater. 2019, 2, 852.  doi: 10.1021/acsaem.8b01915

    49. [49]

      Zhou, Y. N.; Ma, J.; Hu, E.; Yu, X.; Gu, L.; Nam, K. W.; Chen, L.; Wang, Z.; Yang, X. Q. Nat. Commun. 2014, 5, 5381.  doi: 10.1038/ncomms6381

    50. [50]

      Wei, Q. L.; Jiang, Z. Y.; Tan, S. S.; Li, Q. D.; Huang, L.; Yan, M. Y.; Zhou, L.; An, Q. Y.; Mai, L. Q. ACS Appl. Mater. Interfaces 2015, 7, 18211.  doi: 10.1021/acsami.5b06154

    51. [51]

      Clites, M.; Pomerantseva, E. Energy Storage Mater. 2018, 11, 30.  doi: 10.1016/j.ensm.2017.09.005

    52. [52]

      Duan, J.; Zhu, C.; Du, Y.; Wu, Y.; Chen, Z. J. Mater. Sci. 2017, 52, 10470.

  • 加载中
    1. [1]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    2. [2]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    3. [3]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    4. [4]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    5. [5]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    6. [6]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    7. [7]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    8. [8]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    9. [9]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    10. [10]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    11. [11]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    12. [12]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    13. [13]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    14. [14]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    15. [15]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    16. [16]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    17. [17]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    18. [18]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    19. [19]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    20. [20]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

Metrics
  • PDF Downloads(18)
  • Abstract views(1529)
  • HTML views(268)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return