Citation: Li Huabo, Cui Yuanyuan, Liu Yixin, Dai Wei-Lin. Promotional Effect of Cr on Cu/SiO2 Catalyst for the Production of Methanol from Carbonate Hydrogenation[J]. Acta Chimica Sinica, ;2019, 77(4): 371-378. doi: 10.6023/A19010012 shu

Promotional Effect of Cr on Cu/SiO2 Catalyst for the Production of Methanol from Carbonate Hydrogenation

  • Corresponding author: Dai Wei-Lin, wldai@fudan.edu.cn
  • Received Date: 5 January 2019
    Available Online: 7 April 2019

    Fund Project: the Science and Technology Commission of Shanghai Municipality 08DZ2270500the National Natural Science Foundation of China 21373054Project supported by the National Natural Science Foundation of China (No. 21373054) and the Science and Technology Commission of Shanghai Municipality (No. 08DZ2270500)

Figures(7)

  • Recently, it has been widely reported that CO2 was utilized to produce valuable chemical feedstock with copper/zinc and metal oxide based catalysts, yet harsh conditions (high pressure and high temperature, etc.) are still essential for the activity and selectivity. Compared with the harsh conditions required in the direct conversion of CO2 to achieve high selectivity and activity, mild conditions in the indirect conversion of CO2 through the carbonate intermediate provides an alternative. Since CO2 can be easily transferred to carbonate under mild and even atmospheric pressure of CO2 in many reports, hydrogenation of carbonates to methanol at ambient condition presents an attractive strategy for the indirect conversion of CO2 with higher catalytic activity. In our previous work, we have reported that Cu/SiO2 catalyst achieved satisfying performance for the hydrogenation of diethyl carbonate with poor stability at long term running due to the agglomeration of active metal. Herein, we present that the catalytic activity and stability of the catalysts in the hydrogenation of carbonates could be efficiently improved by the addition of Cr. In this research, various Cr-promoted Crx-Cu/SiO2 catalysts were synthesized through an ammonia evaporation method. The effect of added Cr on the catalytic performance was investigated by the hydrogenation of diethyl carbonate (DEC) as a probe reaction system. The results showed that the Crx-Cu/SiO2 catalyst with 3 wt% Cr performed the preferable activity. Under the reaction conditions of temperature of 503 K, hydrogen pressure of 2.5 MPa and liquid hourly space velocity (LHSV) of 1.0 h-1, the conversion of DEC could be 99%, while the selectivity of product methanol (86.2%) and space-time yields (STY) of methanol (5.6 mmolMeOH·gcat-1·h-1) were enhanced significantly. The physicochemical properties of Crx-Cu/SiO2 catalysts were characterized by X-ray diffraction (XRD), N2 physical adsorption and desorption, transmission electron microscopy (TEM), H2 temperature-programmed reduction (H2-TPR) and in-situ diffuse reflection infrared Fourier transform spectroscopy (In-situ DRIFTS). The results revealed that the dispersion of active copper species was significantly improved. The copper chromite species formed by the interaction of copper and chromium could optimize the distribution of Cu(0) and Cu(Ⅰ) and regulate adsorption construction of reactant, efficiently improving the catalytic performance and stability for the hydrogenation of diethyl carbonate to methanol.
  • 加载中
    1. [1]

    2. [2]

      Behrens, M.; Studt, F.; Kasatkin, I.; Kuhl, S.; Havecker, M.; Abild-Pedersen, F.; Zander, S.; Girgsdies, F.; Kurr, P.; Kniep, B.-L.; Tovar, M.; Fischer, R. W.; Norskov, J. K.; Schlogl, R. Science 2012, 336, 893.  doi: 10.1126/science.1219831

    3. [3]

      (a) Balaraman, E.; Gunanathan, C.; Zhang, J.; Shimon, L.; Milstein, D. Nat. Chem. 2011, 3, 609;(b) Balaraman, E.; Ben-David, Y.; Milstein, D. Angew. Chem., Int. Ed. 2011, 50, 11702;(c) Han, Z. B.; Rong, L. C.; Wu, J.; Zhang, L.; Wang, Z.; Ding, K. L. Angew. Chem., Int. Ed. 2012, 51, 13041.

    4. [4]

      (a) Chen, X.; Cui, Y. Y.; Wen, C.; Wang, B.; Dai, W.-L. Chem. Commun. 2015, 51, 13776;(b) Lian, C.; Ren, F. M.; Liu, Y. X.; Zhao, G. F.; Ji, Y. J.; Rong, H. P.; Jia, W.; Ma, L.; Lu, H. Y.; Wang, D. S.; Li, Y. D. Chem. Commun. 2015, 51, 1252;(c) Tamura, M.; Kitanaka, T.; Nakagawa, Y.; Tomishige, K. ACS Catal. 2016, 6, 376;(d) Cui, Y. Y.; Dai, W.-L. Catal. Sci. Technol. 2016, 6, 7752.

    5. [5]

      (a) Wen, C.; Cui, Y. Y.; Dai, W.-L; Xie, S. H.; Fan, K. N. Chem. Commun. 2013, 49, 5195;(b) Ye, R.-P.; Lin, L.; Li, Q. H.; Zhou, Z. F.; Wang, T. T.; Russell, C.; Adidharma, H.; Xu, Z. H; Yao, Y.-G.; Fan, M. H. Catal. Sci. Technol. 2018, 8, 3428.

    6. [6]

    7. [7]

      Yin, A. Y.; Wen, C.; Guo, X. Y.; Dai, W.-L.; Fan, K. N. J. Catal. 2011, 280, 77.  doi: 10.1016/j.jcat.2011.03.006

    8. [8]

      (a) Kim, N. D.; Oh, S.; Joo, J. B; Jung, K.; Yi, J. H. Top Catal. 2010, 53, 517;(b) Xiao, Z. H.; Ma, Z. Q.; Wang, X. K.; Williams, C.; Liang, C. H. Ind. Eng. Chem. Res. 2011, 50, 2031.

    9. [9]

      Tsoncheva, T.; Järn, M.; Paneva, D.; Dimitrov, M.; Mitov, I. Micropor. Mesopor. Mat. 2011, 137, 56.  doi: 10.1016/j.micromeso.2010.08.021

    10. [10]

      Dragoi, B.; Ungureanu, A.; Chirieac, A.; Hulea, V.; Royer, S.; Dumitriu, E. Catal. Sci. Technol. 2013, 3, 2319.  doi: 10.1039/c3cy00198a

    11. [11]

      Wang, J. Q.; Chernavskii, P.; Khodakov, A.; Wang, Y. J. Catal. 2012, 286, 51.  doi: 10.1016/j.jcat.2011.10.012

    12. [12]

      Yin, A. Y.; Guo, X. Y.; Dai, W. -L.; Fan, K. N. Acta Chim. Sinica 2009, 67, 1731.
       

    13. [13]

      Yin, A. Y.; Guo, X. Y.; Dai, W.-L.; Fan, K. N. J. Phys. Chem. C 2009, 113, 11003.

    14. [14]

      (a) Wang, Y.; Shen, Y. L.; Zhao, Y. J.; Lv, J.; Wang, S. P.; Ma, X. B. ACS Catal. 2015, 5, 6200;(b) Zhao, Y. J.; Li, S. M.; Wang, Y.; Shan, B.; Zhang, J.; Wang, S. P.; Ma, X. B. Chem. Eng. J. 2017, 313, 759.

    15. [15]

      Guo, X. L.; Chen, X.; Su, D. S.; Liang, C. H. Acta Chim. Sinica 2018, 76, 22.  doi: 10.3866/PKU.WHXB201706302
       

    16. [16]

      Liang, C. H.; Ma, Z. Q.; Ding, L.; Qiu, J. S. Catal. Lett. 2009, 130, 169.  doi: 10.1007/s10562-009-9844-y

    17. [17]

      Zheng, X. L.; Lin, H. Q.; Zheng, J. W.; Duan, X. P.; Yuan, Y. Z. ACS Catal. 2013, 3, 2738.  doi: 10.1021/cs400574v

    18. [18]

      Zhang, M. H.; Li, G. M.; Jiang, H. X.; Zhang, J. Y. Catal. Lett. 2011, 141, 1104.  doi: 10.1007/s10562-011-0635-x

    19. [19]

      Yurieva, T. M.; Plyasova, L. M.; Makarova, O. Y.; Krieger, T. A. J. Mol. Catal. A:Chem. 1996, 113, 455.  doi: 10.1016/S1381-1169(96)00272-5

    20. [20]

      Khassin, A. A.; Kustova, G. N.; Jobic, H.; Yurieva, T. M.; Chesalov, Y. A.; Filonenko, G. A.; Plyasova, L. M.; Parmon, V. N. Phys. Chem. Chem. Phys. 2009, 11, 6090.  doi: 10.1039/b821381j

    21. [21]

      Xiao, Z. H.; Wang, X. K.; Xiu, J. H.; Wang, Y. M.; Williams, C.; Liang, C. H. Catal. Today 2014, 234, 200.  doi: 10.1016/j.cattod.2014.02.025

    22. [22]

      (a) Choi, K.; Vannice, M. J. Catal. 1991, 131, 22;(b) Fisher, I. A.; Bell, A. T. J. Catal. 1998, 178, 153;(c) Zhu, S. H.; Gao, X. Q.; Zhu, Y. L.; Fan, W. B.; Wang, J. G.; Li, Y. W. Catal. Sci. Technol. 2015, 5, 1169.

    23. [23]

      Ge, X.; Zou, H.; Wang, J.; Shen, J. Y. React. Kinet. Catal. Lett. 2005, 85, 253.  doi: 10.1007/s11144-005-0268-4

    24. [24]

      Boccuzzi, F.; Chiorino, A.; Tsubota, S.; Haruta, M. J. Phys. Chem. 1996, 100, 3625.  doi: 10.1021/jp952259n

    25. [25]

      (a) Gong, J. L.; Yue, H. R.; Zhao, Y. J.; Zhao, S.; Zhao, L.; Lv, J.; Wang, S. P.; Ma, X. B. J. Am. Chem. Soc. 2012, 134, 13922;(b) Yue, H. R.; Zhao, Y. J.; Ma, X. B.; Gong, J. L. Chem. Soc. Rev. 2012, 41, 4218;(c) Zheng, J. W.; Zhou, J. F.; Lin, H. Q.; Duan, X. P.; Williams, C.; Yuan, Y. Z. J. Phys. Chem. C 2015, 119, 13758.

    26. [26]

      Garcilaso, V.; Barrientos, J.; Bobadilla, L. F.; Laguna, O. H.; Boutonnet, M.; Centeno, M. A.; Odriozola, J. A. Renew. Energ. 2019, 132, 1141.  doi: 10.1016/j.renene.2018.08.080

    27. [27]

      Bechara, R.; Wrobel, G.; Daage, M.; Bonnelle, J. P. Appl. Catal. 1985, 16, 15.  doi: 10.1016/S0166-9834(00)84066-X

    28. [28]

      He, Z.; Lin, H. Q.; He, P.; Yuan, Y. Z. J. Catal. 2011, 277, 54.  doi: 10.1016/j.jcat.2010.10.010

    29. [29]

      Zhou, G. B.; Tan, X. H.; Dou, R. F.; Pei, Y.; Fan, K. N.; Qiao, M. H.; Sun, B.; Zong, B. N. Sci. China:Chem. 2014, 44, 121.
       

  • 加载中
    1. [1]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    2. [2]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    3. [3]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    6. [6]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    7. [7]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    8. [8]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    9. [9]

      Guang-Xu DuanQueting ChenRui-Rui ShaoHui-Huang SunTong YuanDong-Hao Zhang . Encapsulating lipase on the surface of magnetic ZIF-8 nanosphers with mesoporous SiO2 nano-membrane for enhancing catalytic performance. Chinese Chemical Letters, 2025, 36(2): 109751-. doi: 10.1016/j.cclet.2024.109751

    10. [10]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    11. [11]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    12. [12]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    13. [13]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    14. [14]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    15. [15]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    16. [16]

      Changyan Sun Hualei Zhou Bin Dong . Application of “PBL” Teaching Mode in Inorganic Chemistry Experimental Education in the Perspective of Course Ideology and Politics: Taking Preparation of Manganese Carbonate as an Example. University Chemistry, 2024, 39(11): 378-383. doi: 10.12461/PKU.DXHX202402016

    17. [17]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    18. [18]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    19. [19]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    20. [20]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

Metrics
  • PDF Downloads(11)
  • Abstract views(1619)
  • HTML views(217)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return