Citation: Gao Zhen, Huang Kun, Du Lin, Liu Huizhou. Interfacial Behavior of Acidic Organophosphorus Extractant Monolayer at Air-Water Interface: Subphase pH and Spreading Solvent Effect[J]. Acta Chimica Sinica, ;2019, 77(6): 506-514. doi: 10.6023/A19010006 shu

Interfacial Behavior of Acidic Organophosphorus Extractant Monolayer at Air-Water Interface: Subphase pH and Spreading Solvent Effect

  • Corresponding author: Huang Kun, huangkun@ustb.edu.cn
  • Received Date: 2 January 2019
    Available Online: 18 June 2019

    Fund Project: the National Natural Science Foundation of China 51074150the National Natural Science Foundation of China 51574213Project supported by the National Natural Science Foundation of China (Nos. 51574213, 51074150)

Figures(9)

  • The interfacial properties of extractant molecules have a significant impact on their complexation reaction activity with rare earth ions at liquid-liquid interface during solvent extraction. Although it is known that acidic organophosphorus extractant exists mainly in the form of dimers in nonpolar organic solvent, the research on solvent extraction kinetics has pointed out that the extractant molecules should react with rare earth ions in the form of monomers at the interface. Therefore, understanding the existing forms of acidic organophosphorus extractant at the interface will help comprehend the interfacial reaction process in solvent extraction. Traditionally, the interfacial properties of the extractant molecules were investigated by measuring interfacial tension isotherms and calculating interfacial adsorption parameters. However, this method can not provide the information of interfacial active species and the aggregation behavior of them. In order to clarify the characteristics of the interfacial behavior of organic extractant molecules at the interface, the effect of subphase pH and the polarity of spreading organic solvent on the adsorption and aggregation behavior of P507 molecules at the air-water interface were investigated by surface pressure-area isotherms and infrared reflectance absorption spectroscopy (IRRAS) based on Langmuir monolayer technique. It was found that P507 monolayers spread by n-hexane at the air-water interface had a certain solubility in the subphase water due to the ionization of the polar groups of P507 molecules. And the solubility decreased as the subphase pH decreased. Thus, the surface pressure-area isotherms changed significantly due to the total amount of P507 molecules remaining on the surface of water changed with the subphase pH. When the subphase pH decreased below 2.0, the influence of the solubility of P507 molecules became inapparent and the amount of P507 molecules remaining on the surface water was almost unchanged. The intermolecular hydrogen bonds formed between the polar groups due to the protonation degree of P507 monolayers improved and the hydration ability of P507 polar groups was weakened. The aggregates formed in the monolayer were confirmed by the red shift of P-O-H groups in IRRAS spectra. However, when the P507 monolayers were spread by polar organic solvent (dichloromethane and chloroform), the existing forms of P507 molecules in the monolayers were changed with the polarity of spreading solvent. And the π-A isotherms of P507 monolayers didn't exhibit the shrinkage of molecular area which existed in the monolayers spread by n-hexane when subphase pH decreased. It meant that the existing forms and aggregation behavior of P507 molecules in monolayers could be altered by the spreading solvent and more P507 monomers existed in the monolayer as the polarity of spreading solvent increased. The conclusion was confirmed by the shift of the peak positions of P-O-H with the spreading solvent in IRRAS spectra. The present work highlights the significant influence of the existing forms of P507 molecules on the interfacial properties of P507 monolayer at the air-water interface and the aggregation behavior in the monolayers can be changed by subphase pH and the spreading solvent.
  • 加载中
    1. [1]

      Jha, M. K.; Kumari, A.; Panda, R.; Kumar, J. R.; Yoo, K.; Lee, J. Y. Hydrometallurgy 2016, 165, 2.  doi: 10.1016/j.hydromet.2016.01.035

    2. [2]

      He, Y.; Chen, K.; Srinivasakannan, C.; Li, S.; Yin, S.; Peng, J.; Guo, S.; Zhang, L. Chem. Eng. J. 2018, 354, 1068.  doi: 10.1016/j.cej.2018.07.193

    3. [3]

      Qiao, B. F.; Muntean, J. V.; de la Cruz, M. O.; Ellis, R. J. Langmuir 2017, 33, 6135.  doi: 10.1021/acs.langmuir.7b01230

    4. [4]

      Chen, K.; He, Y.; Srinivasakannan, C.; Li, S.; Yin, S.; Peng, J.; Guo, S.; Zhang, L. Chem. Eng. J. 2019, 356, 453.  doi: 10.1016/j.cej.2018.09.039

    5. [5]

      Miyake, Y.; Matsuyama, H.; Nishida, M.; Nakai, M.; Nagase, N.; Teramoto, M Hydrometallurgy 1990, 23, 19.

    6. [6]

      Vandegrift, G. F.; Horwitz, E. P. J. Inorg. Nuck. Chem. 1980, 42, 119.  doi: 10.1016/0022-1902(80)80056-X

    7. [7]

      Kanki, T.; Kim, H.; Tomita, A.; Asano, T.; Sano, N. Sep. Purif. Technol. 2000, 19, 93.  doi: 10.1016/S1383-5866(99)00081-7

    8. [8]

      Shen, J. L.; Xi, Z. K.; Gao, Z. L.; Sun, S. X.; Song, Q. S.; Guo, L. Q. Chin. J. Appl. Chem. 1984, 4, 57.

    9. [9]

      Su, W. R.; Chen, J. Ind. Eng. Chem. Res. 2016, 55, 8424.  doi: 10.1021/acs.iecr.6b01709

    10. [10]

      Wang, W. T.; Ye, S. J. Phys. Chem. Chem. Phys. 2017, 19, 4488.  doi: 10.1039/C6CP07827C

    11. [11]

      Zhang, T.; Cathcart, M. G.; Vidalis, A. S.; Allen, H. C. Chem. Phys. Lipids 2016, 200, 24.  doi: 10.1016/j.chemphyslip.2016.06.001

    12. [12]

      Chen, Y. Y.; Sun, R. G.; Wang, F. Y.; Pan, Q. Acta Chim. Sinica 2011, 69, 2299.
       

    13. [13]

      Zhang, B. B.; Ma, C.; Wang, X. G.; Hu, M. B.; Wang, X. L.; Wang, W. Acta Chim. Sinica 2015, 73, 441.  doi: 10.3866/PKU.WHXB201412301
       

    14. [14]

      Zhang, T.; Brantley, S. L.; Verreault, D.; Dhankani, R.; Corcelli, S. A.; Allen, H. C. Langmuir 2018, 34, 530.  doi: 10.1021/acs.langmuir.7b03579

    15. [15]

      Adams, E. M.; Wellen, B. A.; Thiraux, R.; Reddy, S. K.; Vidalis, A. S.; Paesani, F.; Allen, H. C. Phys. Chem. Chem. Phys. 2017, 19, 10481.  doi: 10.1039/C7CP00167C

    16. [16]

      Song, C. S.; Ye, R. Q.; Mu, B. Z. Acta Chim. Sinica 2009, 67, 2038.  doi: 10.3321/j.issn:0567-7351.2009.17.016
       

    17. [17]

      Fang, L. M. M.S. Thesis, Harbin University of Science and Technology, Harbin, 2013.

    18. [18]

      Li, S. Y.; Du, L.; Tsona, N. T.; Wang, W. X. Chemosphere 2018, 196, 323.  doi: 10.1016/j.chemosphere.2017.12.157

    19. [19]

      Adams, E. M.; Verreault, D.; Jayarathne, T.; Cochran, R. E.; Stone, E. A.; Allen, H. C. Phys. Chem. Chem. Phys. 2016, 18, 32345.  doi: 10.1039/C6CP06887A

    20. [20]

      Yang, H. W.; Zhu, P. X.; Feng, Y. J.; Chen, Z.; Zhou, D. L.; Wu, D. C. Acta Chim. Sinica 2007, 65, 2081.
       

    21. [21]

      Uphaus, R. A.; Vandegrift, G. F.; Horwitz, E. P. J. Colloid Interface Sci. 1982, 90, 380.  doi: 10.1016/0021-9797(82)90306-X

    22. [22]

      Gershfeld, N. L.; Pak, C. Y. J. Colloid Interface Sci. 1967, 23, 215.  doi: 10.1016/0021-9797(67)90105-1

    23. [23]

      Zhang, L. R.; Chen, S. M.; Jin, D. S.; Motoko, U.; Tisato, K. Acta Chim. Sinica 1992, 50, 868.
       

    24. [24]

      Zeng, Z. X.; Chen, Q.; Xue, W. L.; Nie, F. Chin. J. Chem. Eng. 2004, 12, 263.

    25. [25]

      Yao, Y. L.; Zeng, Z. X.; Xue, W. L.; Huang, S. D. Acta Chim. Sinica 2005, 63, 1939.  doi: 10.3321/j.issn:0567-7351.2005.21.001
       

    26. [26]

      Cratin, P. D. J. Dispersion Sci. Technol. 1993, 14, 559.  doi: 10.1080/01932699308943427

    27. [27]

      Binghua, Y.; Nagaosa, Y.; Satake, M.; Nomura, A.; Horita, K. Solvent Extr. Ion Exch. 1996, 14, 849.  doi: 10.1080/07366299608918372

    28. [28]

      Petty, M. C. Langmuir-Blodgett films:An introduction, Cambridge University Press, Cambridge, 1996, pp. 55~57.

    29. [29]

      Guennouni, Z.; Cousin, F.; Faure, M. C.; Perrin, P.; Limagne, D.; Konovalov, O.; Goldmann, M. Langmuir 2016, 32, 1971.  doi: 10.1021/acs.langmuir.5b02652

    30. [30]

      Ibrahim, T. H. Sep. Sci. Technol. 2011, 46, 2157.  doi: 10.1080/01496395.2011.594478

    31. [31]

      Sun, G. X.; Yang, Y. H.; Bao, M.; Cui, Y.; Sun, S. X. J. Inorg. Chem. 1996, 2, 212.  doi: 10.3321/j.issn:1001-4861.1996.02.021

    32. [32]

      Kusaka, R.; Watanabe, M. Phys. Chem. Chem. Phys. 2018, 20, 29588.  doi: 10.1039/C8CP04558E

    33. [33]

      Nukada, K.; Naito, K.; Maeda, U. Bull. Chem. Soc. Jpn. 1960, 33, 894.  doi: 10.1246/bcsj.33.894

    34. [34]

      Wu, J. G.; Shi, N.; Gao, H. C.; Chen, D.; Guo, H.; Weng, S. F.; Xu, G. X. Sci. China, Ser. B 1983, 12, 1071.

    35. [35]

      Xu, Z. H.; Wong, S. F.; Guo, H.; Wu, J. G.; Xu, G. X. Acta Sci. Nat. Univ. Pekin. 1983, 6, 45.

    36. [36]

      Zhang, C.; Wang, L.; Huang, X.; Dong, J.; Long, Z.; Zhang, Y. Hydrometallurgy 2014, 147, 7.

    37. [37]

      Ta, A. T.; Hegde, G. A.; Etz, B. D.; Baldwin, A. G.; Yang, Y.; Shafer, J. C.; Jensen, M. P.; Maupin, C. M.; Vyas, S. J. Phys. Chem. B 2018, 122, 5999.  doi: 10.1021/acs.jpcb.8b03165

  • 加载中
    1. [1]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    2. [2]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    3. [3]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    4. [4]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    5. [5]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    6. [6]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    7. [7]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    8. [8]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    9. [9]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    10. [10]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    11. [11]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    12. [12]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    13. [13]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    14. [14]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    15. [15]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    16. [16]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    17. [17]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    18. [18]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    19. [19]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    20. [20]

      Yanhui Sun Junmin Nan Guozheng Ma Xiaoxi Zuo Guoliang Li Xiaoming Lin . Exploration and Teaching Practice of Ideological and Political Elements in Interface Physical Chemistry: Taking “Additional Pressure on Curved Surfaces” as an Teaching Example. University Chemistry, 2024, 39(11): 20-27. doi: 10.3866/PKU.DXHX202402023

Metrics
  • PDF Downloads(20)
  • Abstract views(1178)
  • HTML views(221)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return