Citation: Bo Yifan, Liu Yuyu, Chang Yongzheng, Li Yinxiang, Zhang Xiaofei, Song Chunyuan, Xu Weifeng, Cao Hongtao, Huang Wei. Theoretical and Experimental Studies on Raman Spectroscopy of Cyclic Fluorene-Based Strained Semiconductors[J]. Acta Chimica Sinica, ;2019, 77(5): 442-446. doi: 10.6023/A19010005 shu

Theoretical and Experimental Studies on Raman Spectroscopy of Cyclic Fluorene-Based Strained Semiconductors

  • Corresponding author: Chang Yongzheng, iamyzchang@njupt.edu.cn Cao Hongtao, iamhtcao@njupt.edu.cn Huang Wei, iamwhuang@njupt.edu.cn
  • These authors contributed equally to this work
    Supporting information for this article is available free of charge via the Internet at http://sioc-journal.cn.
  • Received Date: 2 January 2019
    Available Online: 25 May 2019

    Fund Project: the National Natural Science Foundation of China 61605090Natural Science Foundation of Jiangsu Province of China BK20180751Natural Science Foundation of Jiangsu Province of China BK20150832The Nanjing University of Post and Telecommunications NY217082Doctoral Fund of Ministry of Education of China 20133223110007Project supported by the National Natural Science Foundation of China (Nos. 21503114, 21602111, 61605090), Doctoral Fund of Ministry of Education of China (20133223110007), Natural Science Foundation of Jiangsu Province of China (BK20150832, BK20180751), The Nanjing University of Post and Telecommunications (NY217082), Synergetic Innovation Center for Organic Electronics and Information Displays and Excellent science and technology innovation team of Jiangsu Higher Education Institutions (2013). Project was funded by the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe National Natural Science Foundation of China 21602111the National Natural Science Foundation of China 21503114

Figures(6)

  • Cyclic fluorene-based strained semiconductors which achieve both merits of hoop-shaped cycloparaphenylenes and fluorene-based emitters with high-efficiency feature have attracted increasing attention from synthetic chemists and theoreticians due to their aesthetic molecular structure, radial p orbitals and nanosized cavities. Compared with linear fluorene-based semiconductors, Cyclic fluorene-based strained semiconductors exhibit unique photoelectrical properties. For example, contrary to the deep blue emission of linear fluorene-based molecules, the controlled cyclic fluorene-based strained molecules show stronger green emission. However, the properties of molecular vibrations of cyclic fluorene-based strained materials have not been reported so far. In this article, [4]Cyclo-9, 9-dipropyl-2, 7-fluorene (CF) and linear quaterfluorenes (LF) were synthesized as modeling compounds to explore the differences of Raman spectra on structures by theoretical and experimental studies. Raman spectroscopy measurements have been presented on polymer poly(9, 9-dioctylfluorene) (PFO) and LF, and compare them with CF. In addition, we have calculated the theoretical Raman spectra of CF and LF based on time-dependent density functional theory (TDDFT), which are then compared to the experimental results for the assignment of different modes. All calculations were performed at 6-31G (d) basis set along with the range corrected B3LYP density functional. The results demonstrate that the Raman peak positions of CF which are analogous to those of carbon nanotubes such as G band are shifted. Compared to the Raman spectra of LF, G1 and G2 peaks of CF shifted to lower frequency region, however G3 peaks shifted to higher frequency region. The relative intensity of Raman peaks in CF especially in low frequency region has increased. These properties of Raman in CF can be assigned to the changed structure of conjugated backbone and electrical structure due to strain and every fluorene unit of CF has involved in vibration and the delocalization of π electrons gets higher. These results provide powerful basis for correlating structure and properties on strain organic semiconductors by Raman spectra.
  • 加载中
    1. [1]

      Xie, L. H.; Yin, C. R.; Lai, W. Y.; Fan, Q. L.; Huang, W. Prog. Polym. Sci. 2012, 37, 1192.  doi: 10.1016/j.progpolymsci.2012.02.003

    2. [2]

      Sun, M. L.; Xu, R. C.; Xie, L. H.; Wei, Y.; Huang, W. Chinese J. Chem. 2015, 33, 815.  doi: 10.1002/cjoc.v33.8

    3. [3]

      Qian, Y.; Zhang, X.; Xie, L. H.; Qi, D.; Chandran, B. K.; Chen, X.; Huang, W. Adv. Mater. 2016, 28, 9243.  doi: 10.1002/adma.201601278

    4. [4]

      Bao, Z. N.; Rogers, J. A.; Katz, H. E. J. Mater. Chem. 1999, 9, 1895.  doi: 10.1039/a902652e

    5. [5]

      Park, S.; Lee, M. H.; Ahn, K. S.; Choi, H. H.; Shin, J.; Xu, J.; Mei, J. G.; Cho, K.; Bao, Z. A.; Lee, D. R.; Kang, M. S.; Kim, D. H. Adv. Funct. Mater. 2016, 26, 4627.  doi: 10.1002/adfm.v26.26

    6. [6]

      Liu, Y.; Yuan, J.; Zou, Y. P.; Li, Y. F. Acta Chim. Sinica 2017, 75, 257.  doi: 10.3969/j.issn.0253-2409.2017.03.001
       

    7. [7]

      Songbuer; Li, M. H.; Imerhasan, M. Chin. J. Org. Chem. 2018, 38, 594.
       

    8. [8]

      Yamago, S.; Kayahara, E.; Iwamoto, T. Chem. Rec. 2014, 14, 84.  doi: 10.1002/tcr.v14.1

    9. [9]

      Lewis, S. E. Chem. Soc. Rev. 2015, 44, 2221.  doi: 10.1039/C4CS00366G

    10. [10]

      Darzi, E. R.; Jasti, R. Chem. Soc. Rev. 2015, 44, 6401.  doi: 10.1039/C5CS00143A

    11. [11]

      Segawa, Y.; Yagi, A.; Itami, K. Phys. Sci. Rev. 2017, 2, 20160102.
       

    12. [12]

      Kayahara, E.; Kouyama, T.; Kato, T.; Yamago, S. J. Am. Chem. Soc. 2016, 138, 338.  doi: 10.1021/jacs.5b10855

    13. [13]

      Liu, Y. Y.; Lin, J. Y.; Bo, Y. F.; Xie, L. H.; Yi, M. D.; Zhang, X. W.; Zhang, H. M.; Loh, T. P.; Huang, W. Org. Lett. 2016, 18, 172.  doi: 10.1021/acs.orglett.5b03038

    14. [14]

      Fujitsuka, M.; Cho, D. W.; Iwamoto, T.; Yamago, S.; Majima, T. Phys. Chem. Chem. Phys. 2012, 14, 14585.  doi: 10.1039/c2cp42712e

    15. [15]

      Segawa, Y.; Fukazawa, A.; Matsuura, S.; Omachi, H.; Yamaguchi, S.; Irle, S.; Itami, K. Org. Biomol. Chem. 2012, 10, 5979.  doi: 10.1039/c2ob25199j

    16. [16]

      Camacho, C.; Niehaus, T. A.; Itami, K.; Irle, S. Chem. Sci. 2013, 4, 187.  doi: 10.1039/C2SC20878D

    17. [17]

      Castiglioni, C.; Delzoppo, M.; Zerbi, G. J. Raman Spectrosc. 1993, 24, 485.  doi: 10.1002/jrs.v24:8

    18. [18]

      Rebelo, S. L.; Guedes, A.; Szefczyk, M. E.; Pereira, A. M.; Araujo, J. P.; Freire, C. Phys. Chem. Chem. Phys. 2016, 18, 12784.  doi: 10.1039/C5CP06519D

    19. [19]

      Moura, L. G.; Moutinho, M. V. O.; Venezuela, P.; Mauri, F.; Righi, A.; Strano, M. S.; Fantini, C.; Pimenta, M. A. Carbon 2017, 117, 41.  doi: 10.1016/j.carbon.2017.02.048

    20. [20]

      Piao, Y.; Simpson, J. R.; Streit, J. K.; Ao, G.; Zheng, M.; Fagan, J. A.; Hight Walker, A. R. ACS Nano 2016, 10, 5252.  doi: 10.1021/acsnano.6b01031

    21. [21]

      Fujitsuka, M.; Iwamoto, T.; Kayahara, E.; Yamago, S.; Majima, T. ChemPhysChem 2013, 14, 1570.  doi: 10.1002/cphc.v14.8

    22. [22]

      Chen, H.; Golder, M. R.; Wang, F.; Jasti, R.; Swan, A. K. Carbon 2014, 67, 203.  doi: 10.1016/j.carbon.2013.09.082

    23. [23]

      Alvarez, M. P.; Burrezo, P. M.; Kertesz, M.; Iwamoto, T.; Yamago, S.; Xia, J.; Jasti, R.; Navarrete, J. T. L.; Taravillo, M.; Baonza, V. G. Angew. Chem. Int. Ed. 2014, 53, 7033.  doi: 10.1002/anie.201400719

    24. [24]

      Chen, H.; Golder, M. R.; Wang, F.; Doorn, S. K.; Jasti, R.; Tretiak, S.; Swan, A. K. J. Phys. Chem. C 2015, 119, 2879.  doi: 10.1021/jp5117195

    25. [25]

      Pena-Alvarez, M.; Qiu, L.; Taravillo, M.; Baonza, V. G.; Delgado, M. C.; Yamago, S.; Jasti, R.; Navarrete, J. T.; Casado, J.; Kertesz, M. Phys. Chem. Chem. Phys. 2016, 18, 11683.  doi: 10.1039/C5CP05500H

    26. [26]

      Liu, Y. Y.; Li, J. W.; Bo, Y. F.; Yang, L.; Zhang, X. F.; Xie, L. H.; Yi, M. D.; Huang, W. Acta Phys.-Chim. Sin. 2017, 33, 1803.

    27. [27]

      Ariu, M.; Lidzey, D. G.; Bradley, D. D. C. Synthetic Met. 2000, 111, 607.
       

    28. [28]

      Arif, M.; Volz, C.; Guha, S. Phys. Rev. Lett. 2006, 96, 025503.  doi: 10.1103/PhysRevLett.96.025503

    29. [29]

      Volz, C.; Arif, M.; Guha, S. J. Chem. Phys. 2007, 126, 064905.
       

    30. [30]

      Tsoi, W. C.; Lidzey, D. G. J. Phys. Condens. Mat. 2008, 20, 125213.  doi: 10.1088/0953-8984/20/12/125213

    31. [31]

      Liu, B.; Lin, J. Y.; Liu, F.; Yu, M. N.; Zhang, X. W.; Xia, R. D.; Yang, T.; Fang, Y. T.; Xie, L. H.; Huang, W. ACS Appl. Mater. Inter. 2016, 8, 21648.  doi: 10.1021/acsami.6b05247

    32. [32]

      Irle, S.; Lischka, H. J. Mol. Struc.-Theochem 1996, 364, 15.  doi: 10.1016/0166-1280(95)04465-5

  • 加载中
    1. [1]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    2. [2]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    3. [3]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    4. [4]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    5. [5]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    6. [6]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    7. [7]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    8. [8]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    9. [9]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    10. [10]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    11. [11]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    12. [12]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    13. [13]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    14. [14]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    15. [15]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    16. [16]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    17. [17]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    18. [18]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    19. [19]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    20. [20]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

Metrics
  • PDF Downloads(9)
  • Abstract views(1076)
  • HTML views(233)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return