Citation: Li Dongxiang, Gao Yuanyuan, Zhang Xiaofang, Xia Haibing. Digestive Ripening at Nanoscale and Its Application in the Preparation of Monodisperse Nanomaterials[J]. Acta Chimica Sinica, ;2019, 77(4): 305-315. doi: 10.6023/A18120512 shu

Digestive Ripening at Nanoscale and Its Application in the Preparation of Monodisperse Nanomaterials

  • Corresponding author: Li Dongxiang, lidx@qust.edu.cn Xia Haibing, hbxia@sdu.edu.cn
  • Received Date: 25 December 2018
    Available Online: 28 April 2019

    Fund Project: Project supported by the Shandong Provincial Natural Science Foundation (No. ZR2017MB042) and Qingdao University of Science and Technology, Division of Chemistry (No. QUSTHX201812)the Shandong Provincial Natural Science Foundation ZR2017MB042Qingdao University of Science and Technology, Division of Chemistry QUSTHX201812

Figures(10)

  • Recently, a digestive ripening process at nanoscale has been widely used to prepare monodisperse nanoparticles (NPs), especially for sub-10 nm small NPs, with significant advantages such as the very narrow size distribution of the obtained nanoparticles, the versatile applications for various nanoparticles and the simple operation process. However, no Chinese references are reported on digestive ripening process till now, which may limit the cognition and utility of digestive ripening method for some domestic scientists. Thus, this review starts from the discovery of the phenomenon and the proposal of mechanism for digestive ripening at nanoscale, to the analysis of influence factors including the precursor in the precipitation reaction, the digestive ripening reagent, heating treatment temperature and processing time, solvent media and so on. Then, theoretical hypothesis and the derived results are introduced based on the charged surface, the curvature effect, the interaction between NP surface and attached ligand layer, the diffusion effect and the competing reaction balance in the digestive ripening process. Subsequently, the important applications of digestive ripening method in the preparation of monodisperse nanomaterials of metal NPs, alloy NPs, quantum dots of metal oxide and metal chalcogenide, and other NPs are discussed, the obtained small metal or alloy NPs show a perfect sphere shape and a very narrow size distribution (relative standard deviation less than ±5%). Finally, the broad perspectives are proposed in the NP assembly for optical, electric and magnetic nanodevices, and the heterogeneous catalysis of monodisperse metal, alloy and semiconducotr NPs via the digestive ripening method.
  • 加载中
    1. [1]

      Park, J.; Joo, J.; Kwon, S. G.; Jang, Y.; Hyeon, T. Angew. Chem., Int. Ed. 2007, 46, 4630.  doi: 10.1002/(ISSN)1521-3773

    2. [2]

      Yan, Y.; Li, J.; Yang, Y. Prog. Chem. 2009, 21, 971.
       

    3. [3]

      Shi, R.; Gao, G.; Yi, R.; Zhou, K.; Qiu, G.; Liu, X. Chin. J. Chem. 2009, 27, 739.  doi: 10.1002/cjoc.v27:4

    4. [4]

      Ji, X. H.; Song, X. N.; Li, J.; Bai, Y. B.; Yang, W. S.; Peng, X. G. J. Am. Chem. Soc. 2007, 129, 13939.  doi: 10.1021/ja074447k

    5. [5]

      Li, H. S.; Xia, H. B.; Wang, D. Y.; Tao, X. T. Langmuir 2013, 29, 5074.  doi: 10.1021/la400214x

    6. [6]

      Fu, Y.; Du, Y.; Yang, P.; Li, J.; Jiang, L. Sci. China B:Chem. 2007, 50, 494.  doi: 10.1007/s11426-007-0085-x

    7. [7]

      Liu, N.; Wang, K.; Gao, Y. Y.; Li, D. X.; Lin, W. H.; Li, C. F. Colloid. Surf. A:Physicochem. Engin. Asp. 2017, 535, 251.  doi: 10.1016/j.colsurfa.2017.09.017

    8. [8]

      Li, C. F.; Li, D. X.; Wan, G. Q.; Xu, J.; Hou, W. G. Nanoscale Res. Lett. 2011, 6, 440.  doi: 10.1186/1556-276X-6-440

    9. [9]

      Zaiser, E. M.; LaMer, V. K. J. Colloid Sci. 1948, 3, 571.  doi: 10.1016/S0095-8522(48)90050-6

    10. [10]

      LaMer, V. K.; Dinegar, R. H. J. Am. Chem. Soc. 1950, 72, 4847.  doi: 10.1021/ja01167a001

    11. [11]

      Zhang, P. N.; Li, Y. J.; Wang, D. Y.; Xia, H. B. Particle Particle Sys. Character. 2016, 33, 924.  doi: 10.1002/ppsc.v33.12

    12. [12]

      Li, D. X.; Jang, Y. J.; Lee, J.; Lee, J. E.; Kochuveedu, S. T.; Kim, D. H. J. Mater. Chem. 2011, 21, 16453.  doi: 10.1039/c1jm13302k

    13. [13]

      Ostwald, W. Zeitsch. Phys. Chem. 1897, 22, 289.

    14. [14]

      Zhang, Z.; Wang, Z.; He, S.; Wang, C.; Jin, M.; Yin, Y. Chem. Sci. 2015, 6, 5197.  doi: 10.1039/C5SC01787D

    15. [15]

      Lin, X. M.; Sorensen, C. M.; Klabunde, K. J. J. Nanopart. Res. 2000, 2, 157.  doi: 10.1023/A:1010078521951

    16. [16]

      Shimpi, J. R.; Sidhaye, D. S.; Prasad, B. L. V. Langmuir 2017, 33, 9491.  doi: 10.1021/acs.langmuir.7b00193

    17. [17]

      Sidhaye, D. S.; Prasad, B. L. V. New J. Chem. 2011, 35, 755.  doi: 10.1039/C0NJ00359J

    18. [18]

      Yang, Y.; Gong, X.; Zeng, H.; Zhang, L.; Zhang, X.; Zou, C.; Huang, S. J. Phys. Chem. C 2010, 114, 256.  doi: 10.1021/jp909065y

    19. [19]

      Ji, Y.; Yang, S.; Guo, S.; Song, X.; Ding, B.; Yang, Z. Colloid. Surf. A:Physicochem. Engin. Asp. 2010, 372, 204.  doi: 10.1016/j.colsurfa.2010.10.028

    20. [20]

      Liu, S. L.; Han, M.; Shi, Y.; Zhang, C. Z.; Chen, Y.; Bao, J. C.; Dai, Z. H. Europ. J. Inorg. Chem. 2012, 3740.

    21. [21]

      Zhang, S.; Zhang, L.; Liu, K.; Liu, M.; Yin, Y.; Gao, C. Mater. Chem. Front. 2018, 2, 1328.  doi: 10.1039/C8QM00077H

    22. [22]

      Wang, P.; Qi, X.; Zhang, X.; Wang, T.; Li, Y.; Zhang, K.; Zhao, S.; Zhou, J.; Fu, Y. Nanoscale Res. Lett. 2017, 12, 25.  doi: 10.1186/s11671-016-1797-7

    23. [23]

      Cardenas-Trivino, G.; Klabunde, K. J.; Dale, E. B. Langmuir 1987, 3, 986.  doi: 10.1021/la00078a019

    24. [24]

      Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. J. Chem. Soc., Chem. Commun. 1994, 801.

    25. [25]

      Leff, D. V.; Ohara, P. C.; Heath, J. R.; Gelbart, W. M. J. Phys. Chem. 1995, 99, 7036.  doi: 10.1021/j100018a041

    26. [26]

      Lin, X. M.; Wang, G. M.; Sorensen, C. M.; Klabunde, K. J. J. Phys. Chem. B 1999, 103, 5488.  doi: 10.1021/jp990729y

    27. [27]

      Lin, X. M.; Sorensen, C. M.; Klabunde, K. J. Chem. Mater. 1999, 11, 198.  doi: 10.1021/cm980665o

    28. [28]

      Bhaskar, S. P.; Vijayan, M.; Jagirdar, B. R. J. Phys. Chem. C 2014, 118, 18214.  doi: 10.1021/jp505121b

    29. [29]

      Dreier, T. A.; Ackerson, C. J. Angew. Chem., Int. Ed. 2015, 54, 9249.  doi: 10.1002/anie.201502934

    30. [30]

      Samia, A. C. S.; Schlueter, J. A.; Jiang, J. S.; Bader, S. D.; Qin, C.-J.; Lin, X.-M. Chem. Mater. 2006, 18, 5203.  doi: 10.1021/cm0610579

    31. [31]

      Stoeva, S. I.; Zaikovski, V.; Prasad, B. L. V.; Stoimenov, P. K.; Sorensen, C. M.; Klabunde, K. J. Langmuir 2005, 21, 10280.  doi: 10.1021/la051699v

    32. [32]

      Mary Jacob, N.; Thomas, T. Ceramics Int. 2014, 40, 13945.  doi: 10.1016/j.ceramint.2014.05.116

    33. [33]

      Shetty, A.; Saha, A.; Makkar, M.; Viswanatha, R. Phys. Chem. Chem. Phys. 2016, 18, 25887.  doi: 10.1039/C6CP04912E

    34. [34]

      Talluri, B.; Thomas, T. Chem. Phys. Lett 2017, 685, 84.  doi: 10.1016/j.cplett.2017.07.041

    35. [35]

      Lin, M.-L.; Yang, F.; Lee, S. Colloid. Surf. A:Physicochem. Engin. Asp. 2014, 448, 16.  doi: 10.1016/j.colsurfa.2014.01.081

    36. [36]

      Yang, Z.; Klabunde, K. J.; Sorensen, C. M. J. Phys. Chem. C 2007, 111, 18143.  doi: 10.1021/jp0765751

    37. [37]

      Sidhaye, D. S.; Prasad, B. L. V. Chem. Mater. 2010, 22, 1680.  doi: 10.1021/cm9031607

    38. [38]

      Prasad, B. L. V.; Stoeva, S. I.; Sorensen, C. M.; Klabunde, K. J. Langmuir 2002, 18, 7515.  doi: 10.1021/la020181d

    39. [39]

      Sahu, P.; Shimpi, J.; Lee, H. J.; Lee, T. R.; Prasad, B. L. V. Langmuir 2017, 33, 1943.  doi: 10.1021/acs.langmuir.6b03998

    40. [40]

      Silvestri, A.; Polito, L.; Bellani, G.; Zambelli, V.; Jumde, R. P.; Psaro, R.; Evangelisti, C. J. Colloid Interf. Sci. 2015, 439, 28.  doi: 10.1016/j.jcis.2014.10.025

    41. [41]

      Naoe, K.; Petit, C.; Pileni, M. P. J. Phys. Chem. C 2007, 111, 16249.  doi: 10.1021/jp073957y

    42. [42]

      Naoe, K.; Petit, C.; Pileni, M. P. Langmuir 2008, 24, 2792.  doi: 10.1021/la702908y

    43. [43]

      Sun, Y. J.; Jose, D.; Sorensen, C.; Klabunde, K. J. Nanomaterials 2013, 3, 370.  doi: 10.3390/nano3030370

    44. [44]

      Sahu, P.; Prasad, B. L. V. Chem. Phys. Lett 2012, 525~526, 101.

    45. [45]

      Mohrhusen, L.; Osmić, M. RSC Adv. 2017, 7, 12897.  doi: 10.1039/C6RA27454D

    46. [46]

      Prasad, B. L. V.; Stoeva, S. I.; Sorensen, C. M.; Klabunde, K. J. Chem. Mater. 2003, 15, 935.  doi: 10.1021/cm0206439

    47. [47]

      Samia, A. C. S.; Hyzer, K.; Schlueter, J. A.; Qin, C.-J.; Jiang, J. S.; Bader, S. D.; Lin, X.-M. J. Am. Chem. Soc. 2005, 127, 4126.  doi: 10.1021/ja044419r

    48. [48]

      Kholmicheva, N.; Yang, M. R.; Moroz, P.; Eckard, H.; Vore, A.; Cassidy, J.; Pushina, M.; Boddy, A.; Porotnikov, D.; Anzenbacher, P.; Zamkov, M. J. Phys. Chem. C 2018, 122, 23623.  doi: 10.1021/acs.jpcc.8b09215

    49. [49]

      Griffin, F.; Fitzmaurice, D. Langmuir 2007, 23, 10262.  doi: 10.1021/la061261a

    50. [50]

      Su, Y. Y.; Yang, F. Q.; Lee, S. Mater. Res. Exp. 2015, 2, 055007.  doi: 10.1088/2053-1591/2/5/055007

    51. [51]

      Sahu, P.; Prasad, B. L. V. Nanoscale 2013, 5, 1768.  doi: 10.1039/C2NR32855K

    52. [52]

      Sahu, P.; Prasad, B. L. V. Langmuir 2014, 30, 10143.  doi: 10.1021/la500914j

    53. [53]

      Destro, P.; Colombo, M.; Prato, M.; Brescia, R.; Manna, L.; Zanchet, D. RSC Adv. 2016, 6, 22213.  doi: 10.1039/C6RA02027E

    54. [54]

      Lin, M. L.; Yang, F. Q.; Peng, J. S.; Lee, S. J. Appl. Phys. 2014, 115, 054312.  doi: 10.1063/1.4863784

    55. [55]

      Razgoniaeva, N.; Yang, M.; Garrett, P.; Kholmicheva, N.; Moroz, P.; Eckard, H.; Royo Romero, L.; Porotnikov, D.; Khon, D.; Zamkov, M. Chem. Mater. 2018, 30, 1391.  doi: 10.1021/acs.chemmater.7b05165

    56. [56]

      Shimpi, J. R.; Chaudhari, V. R.; Prasad, B. L. V. Langmuir 2018, 34, 13680.  doi: 10.1021/acs.langmuir.8b02699

    57. [57]

      Powell, J. A.; Schwieters, R. M.; Bayliff, K. W.; Herman, E. N.; Hotvedt, N. J.; Changstrom, J. R.; Chakrabarti, A.; Sorensen, C. M. RSC Adv. 2016, 6, 70638.  doi: 10.1039/C6RA15822F

    58. [58]

      Lohman, B. C.; Powell, J. A.; Cingarapu, S.; Aakeroy, C. B.; Chakrabarti, A.; Klabunde, K. J.; Law, B. M.; Sorensen, C. M. Phys. Chem. Chem. Phys. 2012, 14, 6509.  doi: 10.1039/c2cp40645d

    59. [59]

      Talluri, B.; Prasad, E.; Thomas, T. J. Mol. Liq. 2018, 265, 771.  doi: 10.1016/j.molliq.2018.05.069

    60. [60]

      Talluri, B.; Prasad, E.; Thomas, T. Superlatt. Microstruct. 2018, 113, 600.  doi: 10.1016/j.spmi.2017.11.044

    61. [61]

      Seth, J.; Prasad, B. L. V. Nano Res. 2016, 9, 2007.  doi: 10.1007/s12274-016-1091-0

    62. [62]

      Lee, D.-K.; Park, S.-I.; Lee, J. K.; Hwang, N.-M. Acta Mater. 2007, 55, 5281.  doi: 10.1016/j.actamat.2007.05.048

    63. [63]

      Lee, D. K.; Hwang, N. M. Scripta Mater. 2009, 61, 304.  doi: 10.1016/j.scriptamat.2009.04.008

    64. [64]

      Clark, M. D. J. Nanopart. Res. 2014, 16, 2264.  doi: 10.1007/s11051-014-2264-y

    65. [65]

      Irzhak, V. I. Russ. J. Phys. Chem. A 2017, 91, 1503.

    66. [66]

      Thomas, T.; Sethuraman, S.; Satyam, D.; Kumar, D.; Kannadasan, B.; Anderson, A.; Prashant, S.; Vijayakrishnan, R.; Khan, S.; Das, P.; Kumar, M.; Bisi, K.; Chinta, Y.; Talluri, B. Appl. Surf. Sci. 2018, 448, 248.  doi: 10.1016/j.apsusc.2018.04.134

    67. [67]

      Manzanares, J. A.; Peljo, P.; Girault, H. H. J. Phys. Chem. C 2017, 121, 13405.  doi: 10.1021/acs.jpcc.7b04234

    68. [68]

      Stoeva, S.; Klabunde, K. J.; Sorensen, C. M.; Dragieva, I. J. Am. Chem. Soc. 2002, 124, 2305.  doi: 10.1021/ja012076g

    69. [69]

      Cingarapu, S.; Yang, Z.; Sorensen, C. M.; Klabunde, K. J. Chem. Mater. 2009, 21, 1248.  doi: 10.1021/cm802831m

    70. [70]

      Cingarapu, S.; Yang, Z.; Sorensen, C. M.; Klabunde, K. J. J. Nanomater. 2012, 2012, 312087.

    71. [71]

      Uppal, M. A.; Kafizas, A.; Lim, T. H.; Parkin, I. P. New J. Chem. 2010, 34, 1401.  doi: 10.1039/b9nj00745h

    72. [72]

      Sidhaye, D. S.; Prasad, B. L. V. Chem. Phys. Lett 2008, 454, 345.  doi: 10.1016/j.cplett.2008.02.053

    73. [73]

      Han, M.; Liu, S. L.; Nie, X. P.; Yuan, D.; Sun, P. P.; Dai, Z. H.; Bao, J. C. RSC Adv. 2012, 2, 6061.  doi: 10.1039/c2ra20119d

    74. [74]

      Smetana, A. B.; Klabunde, K. J.; Sorensen, C. M. J. Colloid Interf. Sci. 2005, 284, 521.  doi: 10.1016/j.jcis.2004.10.038

    75. [75]

      Zhang, Q.; Xie, J.; Yang, J.; Lee, J. Y. ACS Nano 2009, 3, 139.  doi: 10.1021/nn800531q

    76. [76]

      Li, P.; Peng, Q.; Li, Y. Chem. Eur. J. 2011, 17, 941.  doi: 10.1002/chem.v17.3

    77. [77]

      Shaik, A. H.; Chakraborty, J. RSC Adv. 2015, 5, 85974.  doi: 10.1039/C5RA16508C

    78. [78]

      Arora, N.; Jagirdar, B. R. J. Mater. Chem. 2012, 22, 20671.  doi: 10.1039/c2jm33712f

    79. [79]

      Sanyal, U.; Datta, R.; Jagirdar, B. R. RSC Adv. 2012, 2, 259.  doi: 10.1039/C1RA00468A

    80. [80]

      Kalidindi, S. B.; Jagirdar, B. R. Inorg. Chem. 2009, 48, 4524.  doi: 10.1021/ic9003577

    81. [81]

      Cingarapu, S.; Yang, Z.; Sorensen, C. M.; Klabunde, K. J. Inorg. Chem. 2011, 50, 5000.  doi: 10.1021/ic200232b

    82. [82]

      Naoe, K.; Kataoka, M.; Kawagoe, M. Colloid. Surf. A:Physicochem. Engin. Asp. 2010, 364, 116.  doi: 10.1016/j.colsurfa.2010.05.004

    83. [83]

      Seth, J.; Kona, C. N.; Das, S.; Prasad, B. L. V. Nanoscale 2015, 7, 872.  doi: 10.1039/C4NR04239E

    84. [84]

      Jose, D.; Jagirdar, B. R. J. Solid State Chem. 2010, 183, 2059.  doi: 10.1016/j.jssc.2010.07.013

    85. [85]

      Shankar, R.; Wu, B. B.; Bigioni, T. P. J. Phys. Chem. C 2010, 114, 15916.  doi: 10.1021/jp911316e

    86. [86]

      Jose, D.; Matthiesen, J. E.; Parsons, C.; Sorensen, C. M.; Klabunde, K. J. J. Phys. Chem. Lett. 2012, 3, 885.  doi: 10.1021/jz201640e

    87. [87]

      Muhammed, M. A. H.; Verma, P. K.; Pal, S. K.; Kumar, R. C. A.; Paul, S.; Omkumar, R. V.; Pradeep, T. Chem. Eur. J. 2009, 15, 10110.  doi: 10.1002/chem.v15:39

    88. [88]

      Qian, H.; Jin, R. Chem. Mater. 2011, 23, 2209.  doi: 10.1021/cm200143s

    89. [89]

      Qian, H.; Zhu, Y.; Jin, R. ACS Nano 2009, 3, 3795.  doi: 10.1021/nn901137h

    90. [90]

      Qian, H. Pure Appl. Chem. 2014, 86, 27.  doi: 10.1515/pac-2014-5011

    91. [91]

      Nimmala, P. R.; Jupally, V. R.; Dass, A. Langmuir 2014, 30, 2490.  doi: 10.1021/la404618r

    92. [92]

      Nimmala, P. R.; Dass, A. J. Am. Chem. Soc. 2014, 136, 17016.  doi: 10.1021/ja5103025

    93. [93]

      Qian, H.; Zhu, Y.; Jin, R. Proc. Nat. Acad. Sci. 2012, 109, 696.  doi: 10.1073/pnas.1115307109

    94. [94]

      Kumara, C.; Zuo, X.; Ilavsky, J.; Chapman, K. W.; Cullen, D. A.; Dass, A. J. Am. Chem. Soc. 2014, 136, 7410.  doi: 10.1021/ja502327a

    95. [95]

      Bhattacharya, C.; Arora, N.; Jagirdar, B. R. Langmuir 2019, ASAP, doi: 10.1021/acs.langmuir.1028b02208.

    96. [96]

      Jose, D.; Jagirdar, B. R. J. Phys. Chem. C 2008, 112, 10089.  doi: 10.1021/jp802721s

    97. [97]

      Liu, F.-K.; Chang, Y.-C. Chromatographia 2011, 74, 767.  doi: 10.1007/s10337-011-2139-7

    98. [98]

      Zhang, Q. B.; Xie, J. P.; Liang, J.; Lee, J. Y. Adv. Funct. Mater. 2009, 19, 1387.  doi: 10.1002/adfm.v19:9

    99. [99]

      Kalidindi, S. B.; Jagirdar, B. R. Chem. Asian J. 2009, 4, 835.  doi: 10.1002/asia.v4:6

    100. [100]

      Chen, D.; Xu, L.; Liu, H.; Yang, J. Green Energy & Environment 2019, doi:10.1016/j.gee.2018.1009.1002.  doi: 10.1016/j.gee.2018.1009.1002

    101. [101]

      Bhaskar, S. P.; Jagirdar, B. R. J. All. Comp. 2017, 694, 581.  doi: 10.1016/j.jallcom.2016.09.318

    102. [102]

      Heller, H.; Ahrenstorf, K.; Broekaert, J. A. C.; Weller, H. Phys. Chem. Chem. Phys. 2009, 11, 3257.  doi: 10.1039/b822306h

    103. [103]

      Chokprasombat, K.; Koyvanich, K.; Sirisathitkul, C.; Harding, P.; Rugmai, S. Trans. Indian Inst. Metal. 2016, 69, 733.  doi: 10.1007/s12666-015-0545-5

    104. [104]

      Smetana, A. B.; Klabunde, K. J.; Sorensen, C. M.; Ponce, A. A.; Mwale, B. J. Phys. Chem. B 2006, 110, 2155.  doi: 10.1021/jp0539932

    105. [105]

      Destro, P.; Cantaneo, D. A.; Meira, D. M.; Honorio, G. D.; da Costa, L. S.; Bueno, J. M. C.; Zanchet, D. Europ. J. Inorg. Chem. 2018, 3770.

    106. [106]

      Arora, N.; Jagirdar, B. R. Phys. Chem. Chem. Phys. 2014, 16, 11381.  doi: 10.1039/C4CP00249K

    107. [107]

      Arora, N.; Jagirdar, B. R.; Klabunde, K. J. J. All. Comp. 2014, 610, 35.  doi: 10.1016/j.jallcom.2014.04.190

    108. [108]

      Bhattacharya, C.; Jagirdar, B. R. J. Phys. Chem. C 2018, 122, 10559.  doi: 10.1021/acs.jpcc.8b00874

    109. [109]

      Uppal, M. A.; Ewing, M. B.; Parkin, I. P. Eur. J. Inorg. Chem. 2011, 2011, 4534.  doi: 10.1002/ejic.v2011.29

    110. [110]

      Shore, M. S.; Wang, J.; Johnston-Peck, A. C.; Oldenburg, A. L.; Tracy, J. B. Small 2011, 7, 230.  doi: 10.1002/smll.v7.2

    111. [111]

      Chee, S. S.; Lee, J. H. J. Mater. Chem. C 2014, 2, 5372.  doi: 10.1039/C4TC00509K

    112. [112]

      Heroux, D.; Ponce, A.; Cingarapu, S.; Klabunde, K. J. Adv. Funct. Mater. 2007, 17, 3562.  doi: 10.1002/adfm.v17:17

    113. [113]

      Jacob, N. M.; Thomas, T. RSC Adv. 2015, 5, 15154.  doi: 10.1039/C4RA05778C

    114. [114]

      Talluri, B.; Prasad, E.; Thomas, T. Superlatt. Microstruct. 2018, 116, 122.  doi: 10.1016/j.spmi.2018.02.010

    115. [115]

      Cingarapu, S.; Ikenberry, M. A.; Hamal, D. B.; Sorensen, C. M.; Hohn, K.; Klabunde, K. J. Langmuir 2012, 28, 3569.  doi: 10.1021/la203624p

    116. [116]

      Green, M.; Harwood, H.; Barrowman, C.; Rahman, P.; Eggeman, A.; Festry, F.; Dobson, P.; Ng, T. J. Mater. Chem. 2007, 17, 1989  doi: 10.1039/b615871d

    117. [117]

      Mittal, M.; Sapra, S. Pramana-J. Phys. 2015, 84, 1049.  doi: 10.1007/s12043-015-1007-7

    118. [118]

      Kalita, M.; Cingarapu, S.; Roy, S.; Park, S. C.; Higgins, D.; Jankowiak, R.; Chikan, V.; Klabunde, K. J.; Bossmann, S. H. Inorg. Chem. 2012, 51, 4521.  doi: 10.1021/ic202252m

    119. [119]

      Bhaskar, S. P.; Jagirdar, B. R. J. Chem. Sci. 2012, 124, 1175.  doi: 10.1007/s12039-012-0317-2

    120. [120]

      Kalidindi, S. B.; Jagirdar, B. R. J. Phys. Chem. C 2008, 112, 4042.  doi: 10.1021/jp7100896

    121. [121]

      Yoder, T. S.; Cloud, J. E.; Leong, G. J.; Molk, D. F.; Tussing, M.; Miorelli, J.; Ngo, C.; Kodambaka, S.; Eberhart, M. E.; Richards, R. M.; Yang, Y. Chem. Mater. 2014, 26, 6743.  doi: 10.1021/cm5030553

    122. [122]

      Jeong, J.; Kim, N.; Kim, M. G.; Kim, W. Chem. Mater. 2016, 28, 172.  doi: 10.1021/acs.chemmater.5b03616

    123. [123]

      Shaikh, P. A.; Banerjee, A.; Game, O.; Kolekar, Y.; Kale, S.; Ogale, S. Phys. Chem. Chem. Phys. 2013, 15, 5091.  doi: 10.1039/c3cp43425g

    124. [124]

      Bhaskar, S. P.; Karthika, M. S.; Jagirdar, B. R. Chemistryselect 2018, 3, 6638.  doi: 10.1002/slct.201801157

    125. [125]

      Schultz, D. G.; Lin, X.-M.; Li, D.; Gebhardt, J.; Meron, M.; Viccaro, J.; Lin, B. J. Phys. Chem. B 2006, 110, 24522.  doi: 10.1021/jp063820s

    126. [126]

      Griesemer, S. D.; You, S. S.; Kanjanaboos, P.; Calabro, M.; Jaeger, H. M.; Rice, S. A.; Lin, B. Soft Matter 2017, 13, 3125.  doi: 10.1039/C7SM00319F

    127. [127]

      Shaik, A. H.; Reddy, D. S. Mater. Res. Exp. 2017, 4, 035043.  doi: 10.1088/2053-1591/aa5e5b

    128. [128]

      He, J.; Lin, X.-M.; Divan, R.; Jaeger, H. M. Small 2011, 7, 3487.  doi: 10.1002/smll.v7.24

    129. [129]

      He, J.; Lin, X.-M.; Chan, H.; Vuković, L.; Král, P.; Jaeger, H. M. Nano Lett. 2011, 11, 2430.  doi: 10.1021/nl200841a

    130. [130]

      Urban, J. J.; Talapin, D. V.; Shevchenko, E. V.; Kagan, C. R.; Murray, C. B. Nat. Mater. 2007, 6, 115.  doi: 10.1038/nmat1826

    131. [131]

      Ye, X.; Chen, J.; Murray, C. B. J. Am. Chem. Soc. 2011, 133, 2613.  doi: 10.1021/ja108708v

    132. [132]

      García-Barrasa, J.; López-de-Luzuriaga, J. M.; Monge, M.; Soulantica, K.; Viau, G. J. Nanopart. Res. 2011, 13, 791.  doi: 10.1007/s11051-010-0079-z

    133. [133]

      Stoeva, S. I.; Prasad, B. L. V.; Uma, S.; Stoimenov, P. K.; Zaikovski, V.; Sorensen, C. M.; Klabunde, K. J. J. Phys. Chem. B 2003, 107, 7441.  doi: 10.1021/jp030013+

    134. [134]

      He, J.; Kanjanaboos, P.; Frazer, N. L.; Weis, A.; Lin, X.-M.; Jaeger, H. M. Small 2010, 6, 1449.  doi: 10.1002/smll.v6:13

    135. [135]

      Wang, Y.; Chan, H.; Narayanan, B.; McBride, S. P.; Sankaranarayanan, S. K. R. S.; Lin, X.-M.; Jaeger, H. M. ACS Nano 2017, 11, 8026.  doi: 10.1021/acsnano.7b02676

    136. [136]

      Wang, Y.; Kanjanaboos, P.; Barry, E.; McBride, S.; Lin, X.-M.; Jaeger, H. M. Nano Lett. 2010, 14, 826.

    137. [137]

      Lin, X. M.; Jaeger, H. M.; Sorensen, C. M.; Klabunde, K. J. J. Phys. Chem. B 2001, 105, 3353.  doi: 10.1021/jp0102062

    138. [138]

      Zhu, B.; Gong, S.; Cheng, W. Chem. Soc. Rev. 2019, doi:10.1039/C1038CS00609A.  doi: 10.1039/C1038CS00609A

    139. [139]

      Kagan, C. R. Chem. Soc. Rev. 2019, doi:10.1039/C1038CS00629F.  doi: 10.1039/C1038CS00629F

    140. [140]

      Boles, M. A.; Engel, M.; Talapin, D. V. Chem. Rev. 2016, 116, 11220.  doi: 10.1021/acs.chemrev.6b00196

    141. [141]

      Ortega, S.; Ibáñez, M.; Liu, Y.; Zhang, Y.; Kovalenko, M. V.; Cadavid, D.; Cabot, A. Chem. Soc. Rev. 2017, 46, 3510.  doi: 10.1039/C6CS00567E

    142. [142]

      Wang, Y.; Wang, M.; Li, J.; Wei, Z. Acta Chim. Sinica 2019, 77, 84.
       

    143. [143]

      Li, N. Chin. J. Chem. 2016, 34, 1129.  doi: 10.1002/cjoc.v34.11

    144. [144]

      Cao, J.; Zhu, Z.; Zhao, W.; Xu, J.; Chen, Z. Chin. J. Chem. 2016, 34, 1086.  doi: 10.1002/cjoc.v34.11

    145. [145]

      Scanlon, M. D.; Smirnov, E.; Stockmann, T. J.; Peljo, P. Chem. Rev. 2018, 118, 3722.  doi: 10.1021/acs.chemrev.7b00595

    146. [146]

      Seth, J.; Dubey, P.; Chaudhari, V. R.; Prasad, B. L. V. New J. Chem. 2018, 42, 402.  doi: 10.1039/C7NJ03753H

  • 加载中
    1. [1]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    2. [2]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    3. [3]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    4. [4]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    5. [5]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    6. [6]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    7. [7]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    8. [8]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    9. [9]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    10. [10]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    11. [11]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    12. [12]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    13. [13]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    14. [14]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    15. [15]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    16. [16]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    17. [17]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    18. [18]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    19. [19]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    20. [20]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

Metrics
  • PDF Downloads(49)
  • Abstract views(2765)
  • HTML views(493)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return