Citation: Zhang Xiaolei, Tian Gan, Zhang Xia, Wang Qing, Gu Zhanjun. Controlled Release of Carbon Monoxide Based on Nanomaterials and Their Biomedical Applications[J]. Acta Chimica Sinica, ;2019, 77(5): 406-417. doi: 10.6023/A18120504 shu

Controlled Release of Carbon Monoxide Based on Nanomaterials and Their Biomedical Applications

  • Corresponding author: Zhang Xia, zhangx89@ihep.ac.cn Wang Qing, qwang@sdust.edu.cn
  • Received Date: 17 December 2018
    Available Online: 8 May 2019

    Fund Project: the National Natural Science Foundation of China 11621505the National Basic Research Programs of China 2016YFA0201600Project supported by the National Basic Research Programs of China (Nos. 2016YFA0201600, 2016YFA0202104), the National Natural Science Foundation of China (Nos. 51822207, 51772292, 31571015, 11621505, 11435002, 81703071) and Youth Innovation Promotion Association of Chinese Academy of Sciences (No. 2013007) and Chongqing Basic and Frontier Research Program (No. cstc2016jcyjA0279) and Military Medical Science and Technology Innovation Program of Southwest Hospital (Nos. SWH2016LHJC-07, SWH2016JCYB-01 and SWH2017YQPY-03)the National Natural Science Foundation of China 51822207the National Natural Science Foundation of China 81703071the National Natural Science Foundation of China 51772292Chongqing Basic and Frontier Research Program cstc2016jcyjA0279the National Natural Science Foundation of China 31571015Youth Innovation Promotion Association of Chinese Academy of Sciences 2013007Military Medical Science and Technology Innovation Program of Southwest Hospital SWH2016LHJC-07Military Medical Science and Technology Innovation Program of Southwest Hospital SWH2016JCYB-01the National Basic Research Programs of China 2016YFA0202104Military Medical Science and Technology Innovation Program of Southwest Hospital SWH2017YQPY-03the National Natural Science Foundation of China 11435002

Figures(6)

  • In recent years, the use of gas therapy has been more and more concerned by researchers in biomedical applications. Carbon monoxide (CO) is a diatomic gas messenger molecule with the function of transmitting intercellular information and regulating cellular signals. CO is found to play an extremely important physiological role in multiple systems, including cardiovascular system, nervous system, immune system, endocrine system and respiratory system, cancer therapy, coagulation and fibrinolysis system, organ transplantation and preservation, and so on. The biological functions of carbon monoxide molecule greatly depend on the its concentration, position, and duration. However, the existing carbon monoxide donors including Mn2(CO)10, Ru2Cl4(CO)6, Ru(CO)3Cl(glycinato), CORM-F, CORM-A1 have some disadvantages, such as poor stability, difficulties in dose control, lack of targeting, potential toxic and side effects on normal cells and tissues, which limited their further applications. How to control the concentration of carbon monoxide in the specific region has always been a big challenge in the field of biomedical applications. With the rapid development of nanoscience and technology, researchers have constructed a series of multifunctional carbon monoxide releasing nanomaterials, provided a new idea for CO controlled release, and applied them in the field of biomedicine. In this paper, several kinds of endogenous/exogenous stimulus-responsive CO releasing nanomaterials with the unique advantages are introduced based on the stimuli source. Then, the applications of these controlled CO releasing nanomaterials in biomedical fields, such as inhibiting inflammation, anti-bacte- rial and cancer therapy, are summarized. Finally, the challenges and prospects of CO releasing nanomaterials are discussed.
  • 加载中
    1. [1]

      Queiroga, C. S.; Almeida, A. S.; Vieira, H. L. Biochem. Res. Int. 2012, 2012, 749845.
       

    2. [2]

      Haldane, J. B. S. Biochem. J. 1927, 21, 1068.  doi: 10.1042/bj0211068

    3. [3]

      Turner, M.; Hamilton-Farrell, M. R.; Clark, R. J. J. Accid. Emerg. Med. 1999, 16, 92.  doi: 10.1136/emj.16.2.92

    4. [4]

      Untereiner, A. A.; Wu, L.; Wang, R. Gasotransmitters: Physiology and Pathophysiology, Hermann, A.; Sitdikova, G. F.; Weiger, T. M., Berlin, Heidelberg, Springer, 2012, pp. 37~70.

    5. [5]

      Coburn, R. F. N. Engl. J. Med. 1970, 282, 207.  doi: 10.1056/NEJM197001222820407

    6. [6]

      Douglas, C. G.; Haldane, J. S.; Haldane, J. B. J. Physiol. 1912, 44, 275.  doi: 10.1113/jphysiol.1912.sp001517

    7. [7]

      Slebos, D. J.; Ryter, S. W.; Choi, A. M. Respir. Res. 2003, 4, 7.  doi: 10.1186/1465-9921-4-7

    8. [8]

      Foresti, R.; Hammad, J.; Clark, J. E.; Johnson, T. R.; Mann, B. E.; Friebe, A.; Green, C. J.; Motterlini, R. Br. J. Pharmacol. 2004, 142, 453.  doi: 10.1038/sj.bjp.0705825

    9. [9]

      Ma, X. L.; Sayed, N.; Beuve, A.; van den Akker, F. EMBO J. 2007, 26, 578.  doi: 10.1038/sj.emboj.7601521

    10. [10]

      Rodriguez, A. I.; Gangopadhyay, A.; Kelley, E. E.; Pagano, P. J.; Zuckerbraun, B. S.; Bauer, P. M. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 98.  doi: 10.1161/ATVBAHA.109.197822

    11. [11]

      Garcia-Gallego, S.; Bernardes, G. J. Angew. Chem., Int. Ed. 2014, 53, 9712.  doi: 10.1002/anie.201311225

    12. [12]

      Donegan, S. E.; Naples, K. M. Cancer Pract. 2002, 10, 53.  doi: 10.1046/j.1523-5394.2002.101008.x

    13. [13]

      Ling, K.; Men, F.; Wang, W. C.; Zhou, Y. Q.; Zhang, H. W.; Ye, D. W. J. Med. Chem. 2018, 61, 2611.  doi: 10.1021/acs.jmedchem.6b01153

    14. [14]

      Motterlini, R.; Clark, J. E.; Foresti, R.; Sarathchandra, P.; Mann, B. E.; Green, C. J. Circ. Res. 2002, 90, E17.

    15. [15]

      Zuckerbraun, B. S.; Chin, B. Y.; Bilban, M.; d'Avila, J. C.; Rao, J.; Billiar, T. R.; Otterbein, L. E. FASEB J. 2007, 21, 1099.  doi: 10.1096/fj.06-6644com

    16. [16]

      Parr, S. R.; Wilson, M. T.; Greenwood, C. Biochem. J. 1975, 151, 51.  doi: 10.1042/bj1510051

    17. [17]

      Brunori, M.; Parr, S. R.; Greenwood, C.; Wilson, M. T. Biochem. J. 1975, 151, 185.  doi: 10.1042/bj1510185

    18. [18]

      Gorman, D.; Drewry, A.; Huang, Y. L.; Sames, C. Toxicol. 2003, 187, 25.  doi: 10.1016/S0300-483X(03)00005-2

    19. [19]

      Pitchumony, T. S.; Spingler, B.; Motterlini, R.; Alberto, R. Chimia 2008, 62, 277.  doi: 10.2533/chimia.2008.277

    20. [20]

      Motterlini, R.; Otterbein, L. E. Nat. Rev. Drug Discovery 2010, 9, 728.  doi: 10.1038/nrd3228

    21. [21]

      Sawle, P.; Foresti, R.; Mann, B. E.; Johnson, T. R.; Green, C. J.; Motterlini, R. Br. J. Pharmacol. 2005, 145, 800.  doi: 10.1038/sj.bjp.0706241

    22. [22]

      Inaba, H.; Fujita, K.; Ueno, T. Biomater. Sci. 2015, 3, 1423.  doi: 10.1039/C5BM00210A

    23. [23]

      Li, Y.; Shu, Y. Z.; Liang, M. W.; Xie, X. L.; Jiao, X. Y.; Wang, X.; Tang, B. Angew. Chem. Int. Ed. 2018, 57, 12415.  doi: 10.1002/anie.201805806

    24. [24]

      Sanvicens, N.; Marco, M. P. Trends Biotechnol. 2008, 26, 425.  doi: 10.1016/j.tibtech.2008.04.005

    25. [25]

      Bahrami, B.; Hojjat-Farsangi, M.; Mohammadi, H.; Anvari, E.; Ghalamfarsa, G.; Yousefi, M.; Jadidi-Niaragh, F. Immunol. Lett. 2017, 190, 64.  doi: 10.1016/j.imlet.2017.07.015

    26. [26]

      Ding, C. Z.; Li, Z. B. Mater. Sci. Eng., C 2017, 76, 1440.  doi: 10.1016/j.msec.2017.03.130

    27. [27]

      Wang, Z. Q.; Ciacchi, L. C.; Wei, G. Appl. Sci. 2017, 7, 1175.  doi: 10.3390/app7111175

    28. [28]

      Gu, Z. J.; Zhu, S.; Yan, L.; Zhao, F.; Zhao, Y. L. Adv. Mater. 2018, 1800662.

    29. [29]

      Kemp, J. A.; Shim, M. S.; Heo, C. Y.; Kwon, Y. J. Adv. Drug Delivery Rev. 2016, 98, 3.  doi: 10.1016/j.addr.2015.10.019

    30. [30]

      Blum, A. P.; Kammeyer, J. K.; Rush, A. M.; Callmann, C. E.; Hahn, M. E.; Gianneschi, N. C. J. Am. Chem. Soc. 2015, 137, 2140.  doi: 10.1021/ja510147n

    31. [31]

      Mo, R.; Gu, Z. Mater. Today 2016, 19, 274.  doi: 10.1016/j.mattod.2015.11.025

    32. [32]

      Gulzar, A.; Gai, S. L.; Yang, P. P.; Li, C. X.; Ansari, M. B.; Lin, J. J. Mater. Chem. B 2015, 3, 8599.  doi: 10.1039/C5TB00757G

    33. [33]

      Swietach, P.; Vaughan-Jones, R. D.; Harris, A. L.; Hulikova, A. Phil. Trans. R. Soc. B 2014, 369, 20130099.  doi: 10.1098/rstb.2013.0099

    34. [34]

      Kato, Y.; Ozawa, S.; Miyamoto, C.; Maehata, Y.; Suzuki, A.; Maeda, T.; Baba, Y. Cancer Cell Int. 2013, 13, 89.  doi: 10.1186/1475-2867-13-89

    35. [35]

      He, Q. J. Biomater. Sci. 2017, 5, 2226.  doi: 10.1039/C7BM00699C

    36. [36]

      Fan, W.; Yung, B. C.; Chen, X. Angew. Chem., Int. Ed. 2018, 57, 8383.  doi: 10.1002/anie.v57.28

    37. [37]

      Jin, Q.; Deng, Y. Y.; Jia, F.; Tang, Z.; Ji, J. Adv. Therap. 2018, 1800084.

    38. [38]

      Yin, X. F.; Liu, X. H.; Shen, L. H.; Jin, H.; Yang, P. Y. Acta Chim. Sinica 2015, 73, 337.  doi: 10.3866/PKU.WHXB201412101
       

    39. [39]

      Kim, C. K.; Lim, S. J. Arch. Pharm. Res. 2002, 25, 229.  doi: 10.1007/BF02976620

    40. [40]

      Li, Z. T.; Yu, G. C.; Yang, J. Org. Chem. Front. 2017, 4, 115.  doi: 10.1039/C6QO00579A

    41. [41]

      Zhou, L. X. Acta Chim. Sinica 2017, 75, 552.
       

    42. [42]

      Shao, W.; Liu, X.; Wang, T. T.; Hu, X. Y. Chin. J. Org. Chem. 2018, 38, 1107.
       

    43. [43]

      Zhang, B.; Chang, B. S.; Sun, T. L. Acta Chim. Sinica 2018, 76, 35.
       

    44. [44]

      Li, Z. Y.; Hu, X. Y.; Jiang, J. L.; Zhang, D. M.; Xiao, S. J.; Lin, C.; Wang, L. Y. Chin. J. Org. Chem. 2018, 38, 29.
       

    45. [45]

      Motterlini, R.; Sawle, P.; Hammad, J.; Bains, S.; Alberto, R.; Foresti, R.; Green, C. J. FASEB J. 2005, 19, 284.  doi: 10.1096/fj.04-2169fje

    46. [46]

      Chang, Y. J.; Liu, X. Z.; Zhao, Q.; Yang, X. H.; Wang, K. M.; Wang, Q.; Lin, M.; Yang, M. Chin. Chem. Lett. 2015, 26, 1203.  doi: 10.1016/j.cclet.2015.08.005

    47. [47]

      Gu, Z.; Dang, T. T.; Ma, M.; Tang, B. C.; Cheng, H.; Jiang, S.; Dong, Y.; Zhang, Y.; Anderson, D. G. ACS Nano 2013, 7, 6758.  doi: 10.1021/nn401617u

    48. [48]

      Nguyen, D.; Adnan, N. N.; Oliver, S.; Boyer, C. Macromol. Rapid Commun. 2016, 37, 739.  doi: 10.1002/marc.201500755

    49. [49]

      Lopez-Lazaro, M. FASEB J. 2006, 20, 828.  doi: 10.1096/fj.05-5168hyp

    50. [50]

      Fan, W. P.; Bu, W. B.; Shen, B.; He, Q. J.; Cui, Z. W.; Liu, Y. Y.; Zheng, X. P.; Zhao, K. L.; Shi, J. L. Adv. Mater. 2015, 27, 4155.  doi: 10.1002/adma.v27.28

    51. [51]

      Liu, T. P.; Wu, S. H.; Chen, Y. P.; Chou, C. M.; Chen, C. T. Nanoscale 2015, 7, 6471.  doi: 10.1039/C4NR07421A

    52. [52]

      Suliman, H. B.; Carraway, M. S.; Tatro, L. G.; Piantadosi, C. A. J. Cell Sci. 2007, 120, 299.  doi: 10.1242/jcs.03318

    53. [53]

      Veal, E. A.; Day, A. M.; Morgan, B. A. Mol. Cell 2007, 26, 1.  doi: 10.1016/j.molcel.2007.03.016

    54. [54]

      Tsan, M. F. Int. J. Mol. Med. 2001, 7, 13.
       

    55. [55]

      Senturker, S.; Karahalil, B.; Inal, M.; Yilmaz, H.; Muslumanoglu, H.; Gedikoglu, G.; Dizdaroglu, M. FEBS Lett. 1997, 416, 286.  doi: 10.1016/S0014-5793(97)01226-X

    56. [56]

      Jin, Z. K.; Wen, Y. Y.; Xiong, L. W.; Yang, T.; Zhao, P. H.; Tan, L. W.; Wang, T. F.; Qian, Z. Y.; Su, B. L.; He, Q. J. Chem. Commun. 2017, 53, 5557.  doi: 10.1039/C7CC01576C

    57. [57]

      Jin, Z. K.; Zhao, P. H.; Zhang, J. H.; Yang, T.; Zhou, G. X.; Zhang, D. H.; Wang, T. F.; He, Q. J. Chem. Eur. J. 2018, 24, 11667.  doi: 10.1002/chem.v24.45

    58. [58]

      Wu, L. H.; Cai, X. J.; Zhu, H. F.; Li, J. H.; Shi, D. X.; Su, D. F.; Yue, D.; Gu, Z. W. Adv. Funct. Mater. 2018, 28, 1804324.  doi: 10.1002/adfm.v28.41

    59. [59]

      He, Q. J.; Chen, D. Y.; Fan, M. J. J. Inorg. Mater. 2018, 33, 811.
       

    60. [60]

      Gonzales, M. A.; Han, H.; Moyes, A.; Radinos, A.; Hobbs, A. J.; Coombs, N.; Oliver, S. R. J.; Mascharak, P. K. J. Mater. Chem. B 2014, 2, 2107.  doi: 10.1039/c3tb21309a

    61. [61]

      Govender, P.; Pai, S.; Schatzschneider, U.; Smith, G. S. Inorg. Chem. 2013, 52, 5470.  doi: 10.1021/ic400377k

    62. [62]

      Bohlender, C.; Glaser, S.; Klein, M.; Weisser, J.; Thein, S.; Neugebauer, U.; Popp, J.; Wyrwa, R.; Schiller, A. J. Mater. Chem. B 2014, 2, 1454.  doi: 10.1039/C3TB21649G

    63. [63]

      Bruckmann, N. E.; Wahl, M.; Reiss, G. J.; Kohns, M.; Watjen, W.; Kunz, P. C. Eur. J. Inorg. Chem. 2011, 2011, 4571.
       

    64. [64]

      Popova, M.; Soboleva, T.; Ayad, S.; Benninghoff, A. D.; Berreau, L. M. J. Am. Chem. Soc. 2018, 140, 9721.  doi: 10.1021/jacs.8b06011

    65. [65]

      Fujita, K.; Tanaka, Y.; Abe, S.; Ueno, T. Angew. Chem., Int. Ed. 2016, 55, 1056.  doi: 10.1002/anie.201506738

    66. [66]

      Dordelmann, G.; Meinhardt, T.; Sowik, T.; Krueger, A.; Schatzschneider, U. Chem. Commun. 2012, 48, 11528.  doi: 10.1039/c2cc36491c

    67. [67]

      Carmona, F. J.; Jimenez-Amezcua, I.; Rojas, S.; Romao, C. C.; Navarro, J. A. R.; Maldonado, C. R.; Barea, E. Inorg. Chem. 2017, 56, 10474.  doi: 10.1021/acs.inorgchem.7b01475

    68. [68]

      Chakraborty, I.; Carrington, S. J.; Hauser, J.; Oliver, S. R. J.; Mascharak, P. K. Chem. Mater. 2015, 27, 8387.  doi: 10.1021/acs.chemmater.5b03859

    69. [69]

      Zhang, X. D.; Tian, H.; He, J. H.; Cao, Y. Acta Chim. Sinica 2013, 71, 433.
       

    70. [70]

      Diring, S.; Carne-Sanchez, A.; Zhang, J.; Ikemura, S.; Kim, C.; Inaba, H.; Kitagawa, S.; Furukawa, S. Chem. Sci. 2017, 8, 2381.  doi: 10.1039/C6SC04824B

    71. [71]

      Pierri, A. E.; Huang, P. J.; Garcia, J. V.; Stanfill, J. G.; Chui, M.; Wu, G.; Zheng, N.; Ford, P. C. Chem. Commun. 2015, 51, 2072.  doi: 10.1039/C4CC06766E

    72. [72]

      Askes, S. H. C.; Reddy, G. U.; Wyrwa, R.; Bonnet, S.; Schiller, A. J. Am. Chem. Soc. 2017, 139, 15292.  doi: 10.1021/jacs.7b07427

    73. [73]

      He, Q. J.; Kiesewetter, D. O.; Qu, Y.; Fu, X.; Fan, J.; Huang, P.; Liu, Y. J.; Zhu, G. Z.; Liu, Y.; Qian, Z. Y.; Chen, X. Y. Adv. Mater. 2015, 27, 6741.  doi: 10.1002/adma.201502762

    74. [74]

      Tan, M. J.; Pan, H. C.; Tan, H. R.; Chai, J. W.; Lim, Q. F.; Wong, T. I.; Zhou, X.; Hong, Z. Y.; Liao, L. D.; Kong, K. V. Adv. Healthcare Mater. 2018, 7, 1870022.  doi: 10.1002/adhm.v7.5

    75. [75]

      Wei, Z. J.; Liu, G. X.; Dong, X. T.; Wang, J. X.; Yu, W. S. Acta Chim. Sinica 2014, 72, 257.
       

    76. [76]

      Zhang, X.; Guo, Z.; Liu, J.; Tian, G.; Chen, K.; Yu, S. C.; Gu, Z. J. Sci. Bull. 2017, 62, 985.  doi: 10.1016/j.scib.2017.06.010

    77. [77]

      Chen, H. B.; Gu, Z. J.; An, H. W.; Chen, C. Y.; Chen, J.; Cui, R.; Chen, S. Q.; Chen, W. H.; Chen, X. S.; Chen, X. Y.; Chen, Z.; Ding, B. Q.; Dong, Q.; Fan, Q.; Fu, T.; Hou, D. Y.; Jiang, Q.; Ke, H. T.; Jiang, X. Q.; Liu, G.; Li, S. P.; Li, T. Y.; Liu, Z.; Nie, G. J.; Ovais, M.; Pang, D. W.; Qiu, N. S.; Shen, Y. Q.; Tian, H. Y.; Wang, C.; Wang, H.; Wang, Z. Q.; Xu, H. P.; Xu, J. F.; Yang, X. L.; Zhu, S.; Zheng, X. C.; Zhang, X. Z.; Zhao, Y. B.; Tan, W. H.; Zhang, X.; Zhao, Y. L. Sci. China Chem. 2018, 61, 1503.  doi: 10.1007/s11426-018-9397-5

    78. [78]

      Lin, X. Y.; Wang, J. Acta Chim. Sinica 2017, 75, 979(in Chinese).
       

    79. [79]

      Li, W. P.; Su, C. H.; Tsao, L. C.; Chang, C. T.; Hsu, Y. P.; Yeh, C. S. ACS Nano 2016, 10, 11027.  doi: 10.1021/acsnano.6b05858

    80. [80]

      Cole, A. J.; Yang, V. C.; David, A. E. Trends Biotechnol. 2011, 29, 323.  doi: 10.1016/j.tibtech.2011.03.001

    81. [81]

      Williams, P. S.; Carpino, F.; Zborowski, M. Mol. Pharmaceutics 2009, 6, 1290.  doi: 10.1021/mp900018v

    82. [82]

      Pankhurst, Q. A.; Connolly, J.; Jones, S. K.; Dobson, J. J. Phys. D: Appl. Phys. 2003, 36, R167.  doi: 10.1088/0022-3727/36/13/201

    83. [83]

      Kunz, P. C.; Meyer, H.; Barthel, J.; Sollazzo, S.; Schmidt, A. M.; Janiak, C. Chem. Commun. 2013, 49, 4896.  doi: 10.1039/c3cc41411f

    84. [84]

      Meyer, H.; Winkler, F.; Kunz, P.; Schmidt, A. M.; Hamacher, A.; Kassack, M. U.; Janiak, C. Inorg. Chem. 2015, 54, 11236.  doi: 10.1021/acs.inorgchem.5b01675

    85. [85]

      Stone, J. R.; Marletta, M. A. Biochemistry 1994, 33, 5636.  doi: 10.1021/bi00184a036

    86. [86]

      Botros, F. T.; Navar, L. G. Am. J. Physiol. Heart Circ. Physiol. 2006, 291, H2772.  doi: 10.1152/ajpheart.00528.2006

    87. [87]

      Ramos, K. S.; Lin, H.; McGrath, J. J. Biochem. Pharmacol. 1989, 38, 1368.  doi: 10.1016/0006-2952(89)90347-X

    88. [88]

      Li, A. L.; Xi, Q.; Umstot, E. S.; Bellner, L.; Schwartzman, M. L.; Jaggar, J. H.; Leffler, C. W. Circ. Res. 2008, 102, 234.  doi: 10.1161/CIRCRESAHA.107.164145

    89. [89]

      Song, Y. C.; Liu, J. X.; Zhang, Y. Y.; Shi, W.; Ma, H. M. Acta Chim. Sinica 2013, 71, 1607.
       

    90. [90]

      Otterbein, L. E.; Bach, F. H.; Alam, J.; Soares, M.; Lu, H. T.; Wysk, M.; Davis, R. J.; Flavell, R. A.; Choi, A. M. Nat. Med. 2000, 6, 422.  doi: 10.1038/74680

    91. [91]

      Lee, T. S.; Tsai, H. L.; Chau, L. Y. J. Biol. Chem. 2003, 278, 19325.  doi: 10.1074/jbc.M300498200

    92. [92]

      Nguyen, D.; Nguyen, T. K.; Rice, S. A.; Boyer, C. Biomacromolecules 2015, 16, 2776.  doi: 10.1021/acs.biomac.5b00716

    93. [93]

      Motterlini, R.; Mann, B. E.; Foresti, R. Expert Opin. Investig. Drugs 2005, 14, 1305.  doi: 10.1517/13543784.14.11.1305

    94. [94]

      Mann, B. E. Medicinal Organometallic Chemistry. Topics in Organometallic Chemistry, Eds.: Jaouen, G.; Metzler-Nolte, N., Berlin, Heidelberg, Springer, 2010, Vol. 32, p. 247.

    95. [95]

      Ferrandiz, M. L.; Maicas, N.; Garcia-Arnandis, I.; Terencio, M. C.; Motterlini, R.; Devesa, I.; Joosten, L. A.; van den Berg, W. B.; Alcaraz, M. J. Ann. Rheum. Dis. 2008, 67, 1211.
       

    96. [96]

      Bathoorn, E.; Slebos, D. J.; Postma, D. S.; Koeter, G. H.; van Oosterhout, A. J.; van der Toorn, M.; Boezen, H. M.; Kerstjens, H. A. Eur. Respir. J. 2007, 30, 1131.  doi: 10.1183/09031936.00163206

    97. [97]

      Nowick, J. S.; Chung, D. M.; Maitra, K.; Maitra, S.; Stigers, K. D.; Sun, Y. J. Am. Chem. Soc. 2000, 122, 7654.  doi: 10.1021/ja001142w

    98. [98]

      Morse, D.; Pischke, S. E.; Zhou, Z.; Davis, R. J.; Flavell, R. A.; Loop, T.; Otterbein, S. L.; Otterbein, L. E.; Choi, A. M. J. Biol. Chem. 2003, 278, 36993.  doi: 10.1074/jbc.M302942200

    99. [99]

      Otterbein, L. E.; Choi, A. M. Am. J. Physiol. Lung Cell Mol. Physiol. 2000, 279, L1029.  doi: 10.1152/ajplung.2000.279.6.L1029

    100. [100]

      Pae, H. O.; Oh, G. S.; Choi, B. M.; Chae, S. C.; Kim, Y. M.; Chung, K. R.; Chung, H. T. J. Immunol. 2004, 172, 4744.  doi: 10.4049/jimmunol.172.8.4744

    101. [101]

      Song, R. P.; Zhou, Z. H.; Kim, P. K.; Shapiro, R. A.; Liu, F.; Ferran, C.; Choi, A. M.; Otterbein, L. E. J. Biol. Chem. 2004, 279, 44327.  doi: 10.1074/jbc.M406105200

    102. [102]

      Bani-Hani, M. G.; Greenstein, D.; Mann, B. E.; Green, C. J.; Motterlini, R. J. Pharmacol. Exp. Ther. 2006, 318, 1315.  doi: 10.1124/jpet.106.104729

    103. [103]

      Bani-Hani, K. E.; Bani-Hani, B. K. World J. Gastroenterol. 2006, 12, 1521.  doi: 10.3748/wjg.v12.i10.1521

    104. [104]

      Guillen, M. I.; Megias, J.; Clerigues, V.; Gomar, F.; Alcaraz, M. J. Rheumatol. 2008, 47, 1323.  doi: 10.1093/rheumatology/ken264

    105. [105]

      Hasegawa, U.; van der Vlies, A. J.; Simeoni, E.; Wandrey, C.; Hubbell, J. A. J. Am. Chem. Soc. 2010, 132, 18273.  doi: 10.1021/ja1075025

    106. [106]

      Van der Vlies, A. J.; Inubushi, R.; Uyama, H.; Hasegawa, U. Bioconjug. Chem. 2016, 27, 1500.  doi: 10.1021/acs.bioconjchem.6b00135

    107. [107]

      Qureshi, O. S.; Zeb, A.; Akram, M.; Kim, M. S.; Kang, J. H.; Kim, H. S.; Majid, A.; Han, I.; Chang, S. Y.; Bae, O. N.; Kim, J. K. Eur. J. Pharm. Biopharm. 2016, 108, 187.  doi: 10.1016/j.ejpb.2016.09.008

    108. [108]

      Fujita, K.; Tanaka, Y.; Sho, T.; Ozeki, S.; Abe, S.; Hikage, T.; Kuchimaru, T.; Kizaka-Kondoh, S.; Ueno, T. J. Am. Chem. Soc. 2014, 136, 16902.  doi: 10.1021/ja508938f

    109. [109]

      Fujita, K.; Tanaka, Y.; Abe, F.; Ueno, T. Angew. Chem., Int. Ed. 2016, 55, 1056.  doi: 10.1002/anie.201506738

    110. [110]

      Nobre, L. S.; Seixas, J. D.; Romao, C. C.; Saraiva, L. M. Antimicrob. Agents Chemother. 2007, 51, 4303.  doi: 10.1128/AAC.00802-07

    111. [111]

      Lu, Y.; Slomberg, D. L.; Schoenfisch, M. H. Biomaterials 2014, 35, 1716.  doi: 10.1016/j.biomaterials.2013.11.015

    112. [112]

      Lu, Y.; Slomberg, D. L.; Shah, A.; Schoenfisch, M. H. Biomacromolecules 2013, 14, 3589.  doi: 10.1021/bm400961r

    113. [113]

      Murray, T. S.; Okegbe, C.; Gao, Y.; Kazmierczak, B. I.; Motterlini, R.; Dietrich, L. E.; Bruscia, E. M. PLoS One 2012, 7, e35499.  doi: 10.1371/journal.pone.0035499

    114. [114]

      Nobre, L. S.; Al-Shahrour, F.; Dopazo, J.; Saraiva, L. M. Microbiology 2009, 155, 813.  doi: 10.1099/mic.0.023911-0

    115. [115]

      Desmard, M.; Davidge, K. S.; Bouvet, O.; Morin, D.; Roux, D.; Foresti, R.; Ricard, J. D.; Denamur, E.; Poole, R. K.; Montravers, P.; Motterlini, R.; Boczkowski, J. FASEB J. 2009, 23, 1023.  doi: 10.1096/fj.08-122804

    116. [116]

      Loboda, A.; Jazwa, A.; Wegiel, B.; Jozkowicz, A.; Dulak, J. Cell Mol. Biol. (Noisy-le-grand) 2005, 51, 347.
       

    117. [117]

      Chung, S. W.; Liu, X. L.; Macias, A. A.; Baron, R. M.; Perrella, M. A. J. Clin. Invest. 2008, 118, 239.  doi: 10.1172/JCI32730

    118. [118]

      Bang, C. S.; Kruse, R.; Johansson, K.; Persson, K. BMC Microbiology 2016, 16, 64.  doi: 10.1186/s12866-016-0678-7

    119. [119]

      Flanagan, L.; Steen, R. R.; Saxby, K.; Klatter, M.; Aucott, B. J.; Winstanley, C.; Fairlamb, I. J. S.; Lynam, J. M.; Parkin, A.; Friman, V.-P. Front. Microbiol. 2018, 9, 195.  doi: 10.3389/fmicb.2018.00195

    120. [120]

      Wilson, J. L.; Jesse, H. E.; Poole, R. K.; Davidge, K. S. Curr. Pharm. Biotechnol. 2012, 13, 760.  doi: 10.2174/138920112800399329

    121. [121]

      Li, B.; Zhang, X. Y.; Yang, J. Z.; Zhang, Y. J.; Li, W. X.; Fan, C. H.; Huang, Q. Int. J. Nanomed. 2014, 9, 4697.
       

    122. [122]

      Folkman, J. N. Engl. J. Med. 1971, 285, 1182.  doi: 10.1056/NEJM197111182852108

    123. [123]

      Calderon-Montano, J. M.; Burgos-Moron, E.; Orta, M. L.; Mateos, S.; Lopez-Lazaro, M. Planta Med. 2013, 79, 1017.  doi: 10.1055/s-00000058

    124. [124]

      Pompella, A.; Visvikis, A.; Paolicchi, A.; De Tata, V.; Casini, A. F. Biochem. Pharmacol. 2003, 66, 1499.  doi: 10.1016/S0006-2952(03)00504-5

    125. [125]

      Wu, X. Y.; Zhang, L.; Lü, D.; Liu, Y. H.; Chen, Y. N.; Su, W. J.; Luo, N.; Xiang, R. Acta Chim. Sinica 2013, 71, 299.  doi: 10.7503/cjcu20120233
       

    126. [126]

      Matsumura, Y.; Maeda, H. Cancer Res. 1986, 46, 6387.
       

    127. [127]

      Zheng, D. W.; Li, B.; Li, C. X.; Xu, L.; Fan, J. X.; Lei, Q.; Zhang, X. Z. Adv. Mater. 2017, 29, 1703822.  doi: 10.1002/adma.201703822

  • 加载中
    1. [1]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    2. [2]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    3. [3]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    4. [4]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    5. [5]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    6. [6]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    7. [7]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    8. [8]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    9. [9]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    10. [10]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    11. [11]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    12. [12]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    13. [13]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    14. [14]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    15. [15]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    16. [16]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    17. [17]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    18. [18]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    19. [19]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    20. [20]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

Metrics
  • PDF Downloads(100)
  • Abstract views(3872)
  • HTML views(1242)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return