Citation: Zhang Xiaolei, Tian Gan, Zhang Xia, Wang Qing, Gu Zhanjun. Controlled Release of Carbon Monoxide Based on Nanomaterials and Their Biomedical Applications[J]. Acta Chimica Sinica, ;2019, 77(5): 406-417. doi: 10.6023/A18120504 shu

Controlled Release of Carbon Monoxide Based on Nanomaterials and Their Biomedical Applications

  • Corresponding author: Zhang Xia, zhangx89@ihep.ac.cn Wang Qing, qwang@sdust.edu.cn
  • Received Date: 17 December 2018
    Available Online: 8 May 2019

    Fund Project: the National Natural Science Foundation of China 11621505the National Basic Research Programs of China 2016YFA0201600Project supported by the National Basic Research Programs of China (Nos. 2016YFA0201600, 2016YFA0202104), the National Natural Science Foundation of China (Nos. 51822207, 51772292, 31571015, 11621505, 11435002, 81703071) and Youth Innovation Promotion Association of Chinese Academy of Sciences (No. 2013007) and Chongqing Basic and Frontier Research Program (No. cstc2016jcyjA0279) and Military Medical Science and Technology Innovation Program of Southwest Hospital (Nos. SWH2016LHJC-07, SWH2016JCYB-01 and SWH2017YQPY-03)the National Natural Science Foundation of China 51822207the National Natural Science Foundation of China 81703071the National Natural Science Foundation of China 51772292Chongqing Basic and Frontier Research Program cstc2016jcyjA0279the National Natural Science Foundation of China 31571015Youth Innovation Promotion Association of Chinese Academy of Sciences 2013007Military Medical Science and Technology Innovation Program of Southwest Hospital SWH2016LHJC-07Military Medical Science and Technology Innovation Program of Southwest Hospital SWH2016JCYB-01the National Basic Research Programs of China 2016YFA0202104Military Medical Science and Technology Innovation Program of Southwest Hospital SWH2017YQPY-03the National Natural Science Foundation of China 11435002

Figures(6)

  • In recent years, the use of gas therapy has been more and more concerned by researchers in biomedical applications. Carbon monoxide (CO) is a diatomic gas messenger molecule with the function of transmitting intercellular information and regulating cellular signals. CO is found to play an extremely important physiological role in multiple systems, including cardiovascular system, nervous system, immune system, endocrine system and respiratory system, cancer therapy, coagulation and fibrinolysis system, organ transplantation and preservation, and so on. The biological functions of carbon monoxide molecule greatly depend on the its concentration, position, and duration. However, the existing carbon monoxide donors including Mn2(CO)10, Ru2Cl4(CO)6, Ru(CO)3Cl(glycinato), CORM-F, CORM-A1 have some disadvantages, such as poor stability, difficulties in dose control, lack of targeting, potential toxic and side effects on normal cells and tissues, which limited their further applications. How to control the concentration of carbon monoxide in the specific region has always been a big challenge in the field of biomedical applications. With the rapid development of nanoscience and technology, researchers have constructed a series of multifunctional carbon monoxide releasing nanomaterials, provided a new idea for CO controlled release, and applied them in the field of biomedicine. In this paper, several kinds of endogenous/exogenous stimulus-responsive CO releasing nanomaterials with the unique advantages are introduced based on the stimuli source. Then, the applications of these controlled CO releasing nanomaterials in biomedical fields, such as inhibiting inflammation, anti-bacte- rial and cancer therapy, are summarized. Finally, the challenges and prospects of CO releasing nanomaterials are discussed.
  • 加载中
    1. [1]

      Queiroga, C. S.; Almeida, A. S.; Vieira, H. L. Biochem. Res. Int. 2012, 2012, 749845.
       

    2. [2]

      Haldane, J. B. S. Biochem. J. 1927, 21, 1068.  doi: 10.1042/bj0211068

    3. [3]

      Turner, M.; Hamilton-Farrell, M. R.; Clark, R. J. J. Accid. Emerg. Med. 1999, 16, 92.  doi: 10.1136/emj.16.2.92

    4. [4]

      Untereiner, A. A.; Wu, L.; Wang, R. Gasotransmitters: Physiology and Pathophysiology, Hermann, A.; Sitdikova, G. F.; Weiger, T. M., Berlin, Heidelberg, Springer, 2012, pp. 37~70.

    5. [5]

      Coburn, R. F. N. Engl. J. Med. 1970, 282, 207.  doi: 10.1056/NEJM197001222820407

    6. [6]

      Douglas, C. G.; Haldane, J. S.; Haldane, J. B. J. Physiol. 1912, 44, 275.  doi: 10.1113/jphysiol.1912.sp001517

    7. [7]

      Slebos, D. J.; Ryter, S. W.; Choi, A. M. Respir. Res. 2003, 4, 7.  doi: 10.1186/1465-9921-4-7

    8. [8]

      Foresti, R.; Hammad, J.; Clark, J. E.; Johnson, T. R.; Mann, B. E.; Friebe, A.; Green, C. J.; Motterlini, R. Br. J. Pharmacol. 2004, 142, 453.  doi: 10.1038/sj.bjp.0705825

    9. [9]

      Ma, X. L.; Sayed, N.; Beuve, A.; van den Akker, F. EMBO J. 2007, 26, 578.  doi: 10.1038/sj.emboj.7601521

    10. [10]

      Rodriguez, A. I.; Gangopadhyay, A.; Kelley, E. E.; Pagano, P. J.; Zuckerbraun, B. S.; Bauer, P. M. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 98.  doi: 10.1161/ATVBAHA.109.197822

    11. [11]

      Garcia-Gallego, S.; Bernardes, G. J. Angew. Chem., Int. Ed. 2014, 53, 9712.  doi: 10.1002/anie.201311225

    12. [12]

      Donegan, S. E.; Naples, K. M. Cancer Pract. 2002, 10, 53.  doi: 10.1046/j.1523-5394.2002.101008.x

    13. [13]

      Ling, K.; Men, F.; Wang, W. C.; Zhou, Y. Q.; Zhang, H. W.; Ye, D. W. J. Med. Chem. 2018, 61, 2611.  doi: 10.1021/acs.jmedchem.6b01153

    14. [14]

      Motterlini, R.; Clark, J. E.; Foresti, R.; Sarathchandra, P.; Mann, B. E.; Green, C. J. Circ. Res. 2002, 90, E17.

    15. [15]

      Zuckerbraun, B. S.; Chin, B. Y.; Bilban, M.; d'Avila, J. C.; Rao, J.; Billiar, T. R.; Otterbein, L. E. FASEB J. 2007, 21, 1099.  doi: 10.1096/fj.06-6644com

    16. [16]

      Parr, S. R.; Wilson, M. T.; Greenwood, C. Biochem. J. 1975, 151, 51.  doi: 10.1042/bj1510051

    17. [17]

      Brunori, M.; Parr, S. R.; Greenwood, C.; Wilson, M. T. Biochem. J. 1975, 151, 185.  doi: 10.1042/bj1510185

    18. [18]

      Gorman, D.; Drewry, A.; Huang, Y. L.; Sames, C. Toxicol. 2003, 187, 25.  doi: 10.1016/S0300-483X(03)00005-2

    19. [19]

      Pitchumony, T. S.; Spingler, B.; Motterlini, R.; Alberto, R. Chimia 2008, 62, 277.  doi: 10.2533/chimia.2008.277

    20. [20]

      Motterlini, R.; Otterbein, L. E. Nat. Rev. Drug Discovery 2010, 9, 728.  doi: 10.1038/nrd3228

    21. [21]

      Sawle, P.; Foresti, R.; Mann, B. E.; Johnson, T. R.; Green, C. J.; Motterlini, R. Br. J. Pharmacol. 2005, 145, 800.  doi: 10.1038/sj.bjp.0706241

    22. [22]

      Inaba, H.; Fujita, K.; Ueno, T. Biomater. Sci. 2015, 3, 1423.  doi: 10.1039/C5BM00210A

    23. [23]

      Li, Y.; Shu, Y. Z.; Liang, M. W.; Xie, X. L.; Jiao, X. Y.; Wang, X.; Tang, B. Angew. Chem. Int. Ed. 2018, 57, 12415.  doi: 10.1002/anie.201805806

    24. [24]

      Sanvicens, N.; Marco, M. P. Trends Biotechnol. 2008, 26, 425.  doi: 10.1016/j.tibtech.2008.04.005

    25. [25]

      Bahrami, B.; Hojjat-Farsangi, M.; Mohammadi, H.; Anvari, E.; Ghalamfarsa, G.; Yousefi, M.; Jadidi-Niaragh, F. Immunol. Lett. 2017, 190, 64.  doi: 10.1016/j.imlet.2017.07.015

    26. [26]

      Ding, C. Z.; Li, Z. B. Mater. Sci. Eng., C 2017, 76, 1440.  doi: 10.1016/j.msec.2017.03.130

    27. [27]

      Wang, Z. Q.; Ciacchi, L. C.; Wei, G. Appl. Sci. 2017, 7, 1175.  doi: 10.3390/app7111175

    28. [28]

      Gu, Z. J.; Zhu, S.; Yan, L.; Zhao, F.; Zhao, Y. L. Adv. Mater. 2018, 1800662.

    29. [29]

      Kemp, J. A.; Shim, M. S.; Heo, C. Y.; Kwon, Y. J. Adv. Drug Delivery Rev. 2016, 98, 3.  doi: 10.1016/j.addr.2015.10.019

    30. [30]

      Blum, A. P.; Kammeyer, J. K.; Rush, A. M.; Callmann, C. E.; Hahn, M. E.; Gianneschi, N. C. J. Am. Chem. Soc. 2015, 137, 2140.  doi: 10.1021/ja510147n

    31. [31]

      Mo, R.; Gu, Z. Mater. Today 2016, 19, 274.  doi: 10.1016/j.mattod.2015.11.025

    32. [32]

      Gulzar, A.; Gai, S. L.; Yang, P. P.; Li, C. X.; Ansari, M. B.; Lin, J. J. Mater. Chem. B 2015, 3, 8599.  doi: 10.1039/C5TB00757G

    33. [33]

      Swietach, P.; Vaughan-Jones, R. D.; Harris, A. L.; Hulikova, A. Phil. Trans. R. Soc. B 2014, 369, 20130099.  doi: 10.1098/rstb.2013.0099

    34. [34]

      Kato, Y.; Ozawa, S.; Miyamoto, C.; Maehata, Y.; Suzuki, A.; Maeda, T.; Baba, Y. Cancer Cell Int. 2013, 13, 89.  doi: 10.1186/1475-2867-13-89

    35. [35]

      He, Q. J. Biomater. Sci. 2017, 5, 2226.  doi: 10.1039/C7BM00699C

    36. [36]

      Fan, W.; Yung, B. C.; Chen, X. Angew. Chem., Int. Ed. 2018, 57, 8383.  doi: 10.1002/anie.v57.28

    37. [37]

      Jin, Q.; Deng, Y. Y.; Jia, F.; Tang, Z.; Ji, J. Adv. Therap. 2018, 1800084.

    38. [38]

      Yin, X. F.; Liu, X. H.; Shen, L. H.; Jin, H.; Yang, P. Y. Acta Chim. Sinica 2015, 73, 337.  doi: 10.3866/PKU.WHXB201412101
       

    39. [39]

      Kim, C. K.; Lim, S. J. Arch. Pharm. Res. 2002, 25, 229.  doi: 10.1007/BF02976620

    40. [40]

      Li, Z. T.; Yu, G. C.; Yang, J. Org. Chem. Front. 2017, 4, 115.  doi: 10.1039/C6QO00579A

    41. [41]

      Zhou, L. X. Acta Chim. Sinica 2017, 75, 552.
       

    42. [42]

      Shao, W.; Liu, X.; Wang, T. T.; Hu, X. Y. Chin. J. Org. Chem. 2018, 38, 1107.
       

    43. [43]

      Zhang, B.; Chang, B. S.; Sun, T. L. Acta Chim. Sinica 2018, 76, 35.
       

    44. [44]

      Li, Z. Y.; Hu, X. Y.; Jiang, J. L.; Zhang, D. M.; Xiao, S. J.; Lin, C.; Wang, L. Y. Chin. J. Org. Chem. 2018, 38, 29.
       

    45. [45]

      Motterlini, R.; Sawle, P.; Hammad, J.; Bains, S.; Alberto, R.; Foresti, R.; Green, C. J. FASEB J. 2005, 19, 284.  doi: 10.1096/fj.04-2169fje

    46. [46]

      Chang, Y. J.; Liu, X. Z.; Zhao, Q.; Yang, X. H.; Wang, K. M.; Wang, Q.; Lin, M.; Yang, M. Chin. Chem. Lett. 2015, 26, 1203.  doi: 10.1016/j.cclet.2015.08.005

    47. [47]

      Gu, Z.; Dang, T. T.; Ma, M.; Tang, B. C.; Cheng, H.; Jiang, S.; Dong, Y.; Zhang, Y.; Anderson, D. G. ACS Nano 2013, 7, 6758.  doi: 10.1021/nn401617u

    48. [48]

      Nguyen, D.; Adnan, N. N.; Oliver, S.; Boyer, C. Macromol. Rapid Commun. 2016, 37, 739.  doi: 10.1002/marc.201500755

    49. [49]

      Lopez-Lazaro, M. FASEB J. 2006, 20, 828.  doi: 10.1096/fj.05-5168hyp

    50. [50]

      Fan, W. P.; Bu, W. B.; Shen, B.; He, Q. J.; Cui, Z. W.; Liu, Y. Y.; Zheng, X. P.; Zhao, K. L.; Shi, J. L. Adv. Mater. 2015, 27, 4155.  doi: 10.1002/adma.v27.28

    51. [51]

      Liu, T. P.; Wu, S. H.; Chen, Y. P.; Chou, C. M.; Chen, C. T. Nanoscale 2015, 7, 6471.  doi: 10.1039/C4NR07421A

    52. [52]

      Suliman, H. B.; Carraway, M. S.; Tatro, L. G.; Piantadosi, C. A. J. Cell Sci. 2007, 120, 299.  doi: 10.1242/jcs.03318

    53. [53]

      Veal, E. A.; Day, A. M.; Morgan, B. A. Mol. Cell 2007, 26, 1.  doi: 10.1016/j.molcel.2007.03.016

    54. [54]

      Tsan, M. F. Int. J. Mol. Med. 2001, 7, 13.
       

    55. [55]

      Senturker, S.; Karahalil, B.; Inal, M.; Yilmaz, H.; Muslumanoglu, H.; Gedikoglu, G.; Dizdaroglu, M. FEBS Lett. 1997, 416, 286.  doi: 10.1016/S0014-5793(97)01226-X

    56. [56]

      Jin, Z. K.; Wen, Y. Y.; Xiong, L. W.; Yang, T.; Zhao, P. H.; Tan, L. W.; Wang, T. F.; Qian, Z. Y.; Su, B. L.; He, Q. J. Chem. Commun. 2017, 53, 5557.  doi: 10.1039/C7CC01576C

    57. [57]

      Jin, Z. K.; Zhao, P. H.; Zhang, J. H.; Yang, T.; Zhou, G. X.; Zhang, D. H.; Wang, T. F.; He, Q. J. Chem. Eur. J. 2018, 24, 11667.  doi: 10.1002/chem.v24.45

    58. [58]

      Wu, L. H.; Cai, X. J.; Zhu, H. F.; Li, J. H.; Shi, D. X.; Su, D. F.; Yue, D.; Gu, Z. W. Adv. Funct. Mater. 2018, 28, 1804324.  doi: 10.1002/adfm.v28.41

    59. [59]

      He, Q. J.; Chen, D. Y.; Fan, M. J. J. Inorg. Mater. 2018, 33, 811.
       

    60. [60]

      Gonzales, M. A.; Han, H.; Moyes, A.; Radinos, A.; Hobbs, A. J.; Coombs, N.; Oliver, S. R. J.; Mascharak, P. K. J. Mater. Chem. B 2014, 2, 2107.  doi: 10.1039/c3tb21309a

    61. [61]

      Govender, P.; Pai, S.; Schatzschneider, U.; Smith, G. S. Inorg. Chem. 2013, 52, 5470.  doi: 10.1021/ic400377k

    62. [62]

      Bohlender, C.; Glaser, S.; Klein, M.; Weisser, J.; Thein, S.; Neugebauer, U.; Popp, J.; Wyrwa, R.; Schiller, A. J. Mater. Chem. B 2014, 2, 1454.  doi: 10.1039/C3TB21649G

    63. [63]

      Bruckmann, N. E.; Wahl, M.; Reiss, G. J.; Kohns, M.; Watjen, W.; Kunz, P. C. Eur. J. Inorg. Chem. 2011, 2011, 4571.
       

    64. [64]

      Popova, M.; Soboleva, T.; Ayad, S.; Benninghoff, A. D.; Berreau, L. M. J. Am. Chem. Soc. 2018, 140, 9721.  doi: 10.1021/jacs.8b06011

    65. [65]

      Fujita, K.; Tanaka, Y.; Abe, S.; Ueno, T. Angew. Chem., Int. Ed. 2016, 55, 1056.  doi: 10.1002/anie.201506738

    66. [66]

      Dordelmann, G.; Meinhardt, T.; Sowik, T.; Krueger, A.; Schatzschneider, U. Chem. Commun. 2012, 48, 11528.  doi: 10.1039/c2cc36491c

    67. [67]

      Carmona, F. J.; Jimenez-Amezcua, I.; Rojas, S.; Romao, C. C.; Navarro, J. A. R.; Maldonado, C. R.; Barea, E. Inorg. Chem. 2017, 56, 10474.  doi: 10.1021/acs.inorgchem.7b01475

    68. [68]

      Chakraborty, I.; Carrington, S. J.; Hauser, J.; Oliver, S. R. J.; Mascharak, P. K. Chem. Mater. 2015, 27, 8387.  doi: 10.1021/acs.chemmater.5b03859

    69. [69]

      Zhang, X. D.; Tian, H.; He, J. H.; Cao, Y. Acta Chim. Sinica 2013, 71, 433.
       

    70. [70]

      Diring, S.; Carne-Sanchez, A.; Zhang, J.; Ikemura, S.; Kim, C.; Inaba, H.; Kitagawa, S.; Furukawa, S. Chem. Sci. 2017, 8, 2381.  doi: 10.1039/C6SC04824B

    71. [71]

      Pierri, A. E.; Huang, P. J.; Garcia, J. V.; Stanfill, J. G.; Chui, M.; Wu, G.; Zheng, N.; Ford, P. C. Chem. Commun. 2015, 51, 2072.  doi: 10.1039/C4CC06766E

    72. [72]

      Askes, S. H. C.; Reddy, G. U.; Wyrwa, R.; Bonnet, S.; Schiller, A. J. Am. Chem. Soc. 2017, 139, 15292.  doi: 10.1021/jacs.7b07427

    73. [73]

      He, Q. J.; Kiesewetter, D. O.; Qu, Y.; Fu, X.; Fan, J.; Huang, P.; Liu, Y. J.; Zhu, G. Z.; Liu, Y.; Qian, Z. Y.; Chen, X. Y. Adv. Mater. 2015, 27, 6741.  doi: 10.1002/adma.201502762

    74. [74]

      Tan, M. J.; Pan, H. C.; Tan, H. R.; Chai, J. W.; Lim, Q. F.; Wong, T. I.; Zhou, X.; Hong, Z. Y.; Liao, L. D.; Kong, K. V. Adv. Healthcare Mater. 2018, 7, 1870022.  doi: 10.1002/adhm.v7.5

    75. [75]

      Wei, Z. J.; Liu, G. X.; Dong, X. T.; Wang, J. X.; Yu, W. S. Acta Chim. Sinica 2014, 72, 257.
       

    76. [76]

      Zhang, X.; Guo, Z.; Liu, J.; Tian, G.; Chen, K.; Yu, S. C.; Gu, Z. J. Sci. Bull. 2017, 62, 985.  doi: 10.1016/j.scib.2017.06.010

    77. [77]

      Chen, H. B.; Gu, Z. J.; An, H. W.; Chen, C. Y.; Chen, J.; Cui, R.; Chen, S. Q.; Chen, W. H.; Chen, X. S.; Chen, X. Y.; Chen, Z.; Ding, B. Q.; Dong, Q.; Fan, Q.; Fu, T.; Hou, D. Y.; Jiang, Q.; Ke, H. T.; Jiang, X. Q.; Liu, G.; Li, S. P.; Li, T. Y.; Liu, Z.; Nie, G. J.; Ovais, M.; Pang, D. W.; Qiu, N. S.; Shen, Y. Q.; Tian, H. Y.; Wang, C.; Wang, H.; Wang, Z. Q.; Xu, H. P.; Xu, J. F.; Yang, X. L.; Zhu, S.; Zheng, X. C.; Zhang, X. Z.; Zhao, Y. B.; Tan, W. H.; Zhang, X.; Zhao, Y. L. Sci. China Chem. 2018, 61, 1503.  doi: 10.1007/s11426-018-9397-5

    78. [78]

      Lin, X. Y.; Wang, J. Acta Chim. Sinica 2017, 75, 979(in Chinese).
       

    79. [79]

      Li, W. P.; Su, C. H.; Tsao, L. C.; Chang, C. T.; Hsu, Y. P.; Yeh, C. S. ACS Nano 2016, 10, 11027.  doi: 10.1021/acsnano.6b05858

    80. [80]

      Cole, A. J.; Yang, V. C.; David, A. E. Trends Biotechnol. 2011, 29, 323.  doi: 10.1016/j.tibtech.2011.03.001

    81. [81]

      Williams, P. S.; Carpino, F.; Zborowski, M. Mol. Pharmaceutics 2009, 6, 1290.  doi: 10.1021/mp900018v

    82. [82]

      Pankhurst, Q. A.; Connolly, J.; Jones, S. K.; Dobson, J. J. Phys. D: Appl. Phys. 2003, 36, R167.  doi: 10.1088/0022-3727/36/13/201

    83. [83]

      Kunz, P. C.; Meyer, H.; Barthel, J.; Sollazzo, S.; Schmidt, A. M.; Janiak, C. Chem. Commun. 2013, 49, 4896.  doi: 10.1039/c3cc41411f

    84. [84]

      Meyer, H.; Winkler, F.; Kunz, P.; Schmidt, A. M.; Hamacher, A.; Kassack, M. U.; Janiak, C. Inorg. Chem. 2015, 54, 11236.  doi: 10.1021/acs.inorgchem.5b01675

    85. [85]

      Stone, J. R.; Marletta, M. A. Biochemistry 1994, 33, 5636.  doi: 10.1021/bi00184a036

    86. [86]

      Botros, F. T.; Navar, L. G. Am. J. Physiol. Heart Circ. Physiol. 2006, 291, H2772.  doi: 10.1152/ajpheart.00528.2006

    87. [87]

      Ramos, K. S.; Lin, H.; McGrath, J. J. Biochem. Pharmacol. 1989, 38, 1368.  doi: 10.1016/0006-2952(89)90347-X

    88. [88]

      Li, A. L.; Xi, Q.; Umstot, E. S.; Bellner, L.; Schwartzman, M. L.; Jaggar, J. H.; Leffler, C. W. Circ. Res. 2008, 102, 234.  doi: 10.1161/CIRCRESAHA.107.164145

    89. [89]

      Song, Y. C.; Liu, J. X.; Zhang, Y. Y.; Shi, W.; Ma, H. M. Acta Chim. Sinica 2013, 71, 1607.
       

    90. [90]

      Otterbein, L. E.; Bach, F. H.; Alam, J.; Soares, M.; Lu, H. T.; Wysk, M.; Davis, R. J.; Flavell, R. A.; Choi, A. M. Nat. Med. 2000, 6, 422.  doi: 10.1038/74680

    91. [91]

      Lee, T. S.; Tsai, H. L.; Chau, L. Y. J. Biol. Chem. 2003, 278, 19325.  doi: 10.1074/jbc.M300498200

    92. [92]

      Nguyen, D.; Nguyen, T. K.; Rice, S. A.; Boyer, C. Biomacromolecules 2015, 16, 2776.  doi: 10.1021/acs.biomac.5b00716

    93. [93]

      Motterlini, R.; Mann, B. E.; Foresti, R. Expert Opin. Investig. Drugs 2005, 14, 1305.  doi: 10.1517/13543784.14.11.1305

    94. [94]

      Mann, B. E. Medicinal Organometallic Chemistry. Topics in Organometallic Chemistry, Eds.: Jaouen, G.; Metzler-Nolte, N., Berlin, Heidelberg, Springer, 2010, Vol. 32, p. 247.

    95. [95]

      Ferrandiz, M. L.; Maicas, N.; Garcia-Arnandis, I.; Terencio, M. C.; Motterlini, R.; Devesa, I.; Joosten, L. A.; van den Berg, W. B.; Alcaraz, M. J. Ann. Rheum. Dis. 2008, 67, 1211.
       

    96. [96]

      Bathoorn, E.; Slebos, D. J.; Postma, D. S.; Koeter, G. H.; van Oosterhout, A. J.; van der Toorn, M.; Boezen, H. M.; Kerstjens, H. A. Eur. Respir. J. 2007, 30, 1131.  doi: 10.1183/09031936.00163206

    97. [97]

      Nowick, J. S.; Chung, D. M.; Maitra, K.; Maitra, S.; Stigers, K. D.; Sun, Y. J. Am. Chem. Soc. 2000, 122, 7654.  doi: 10.1021/ja001142w

    98. [98]

      Morse, D.; Pischke, S. E.; Zhou, Z.; Davis, R. J.; Flavell, R. A.; Loop, T.; Otterbein, S. L.; Otterbein, L. E.; Choi, A. M. J. Biol. Chem. 2003, 278, 36993.  doi: 10.1074/jbc.M302942200

    99. [99]

      Otterbein, L. E.; Choi, A. M. Am. J. Physiol. Lung Cell Mol. Physiol. 2000, 279, L1029.  doi: 10.1152/ajplung.2000.279.6.L1029

    100. [100]

      Pae, H. O.; Oh, G. S.; Choi, B. M.; Chae, S. C.; Kim, Y. M.; Chung, K. R.; Chung, H. T. J. Immunol. 2004, 172, 4744.  doi: 10.4049/jimmunol.172.8.4744

    101. [101]

      Song, R. P.; Zhou, Z. H.; Kim, P. K.; Shapiro, R. A.; Liu, F.; Ferran, C.; Choi, A. M.; Otterbein, L. E. J. Biol. Chem. 2004, 279, 44327.  doi: 10.1074/jbc.M406105200

    102. [102]

      Bani-Hani, M. G.; Greenstein, D.; Mann, B. E.; Green, C. J.; Motterlini, R. J. Pharmacol. Exp. Ther. 2006, 318, 1315.  doi: 10.1124/jpet.106.104729

    103. [103]

      Bani-Hani, K. E.; Bani-Hani, B. K. World J. Gastroenterol. 2006, 12, 1521.  doi: 10.3748/wjg.v12.i10.1521

    104. [104]

      Guillen, M. I.; Megias, J.; Clerigues, V.; Gomar, F.; Alcaraz, M. J. Rheumatol. 2008, 47, 1323.  doi: 10.1093/rheumatology/ken264

    105. [105]

      Hasegawa, U.; van der Vlies, A. J.; Simeoni, E.; Wandrey, C.; Hubbell, J. A. J. Am. Chem. Soc. 2010, 132, 18273.  doi: 10.1021/ja1075025

    106. [106]

      Van der Vlies, A. J.; Inubushi, R.; Uyama, H.; Hasegawa, U. Bioconjug. Chem. 2016, 27, 1500.  doi: 10.1021/acs.bioconjchem.6b00135

    107. [107]

      Qureshi, O. S.; Zeb, A.; Akram, M.; Kim, M. S.; Kang, J. H.; Kim, H. S.; Majid, A.; Han, I.; Chang, S. Y.; Bae, O. N.; Kim, J. K. Eur. J. Pharm. Biopharm. 2016, 108, 187.  doi: 10.1016/j.ejpb.2016.09.008

    108. [108]

      Fujita, K.; Tanaka, Y.; Sho, T.; Ozeki, S.; Abe, S.; Hikage, T.; Kuchimaru, T.; Kizaka-Kondoh, S.; Ueno, T. J. Am. Chem. Soc. 2014, 136, 16902.  doi: 10.1021/ja508938f

    109. [109]

      Fujita, K.; Tanaka, Y.; Abe, F.; Ueno, T. Angew. Chem., Int. Ed. 2016, 55, 1056.  doi: 10.1002/anie.201506738

    110. [110]

      Nobre, L. S.; Seixas, J. D.; Romao, C. C.; Saraiva, L. M. Antimicrob. Agents Chemother. 2007, 51, 4303.  doi: 10.1128/AAC.00802-07

    111. [111]

      Lu, Y.; Slomberg, D. L.; Schoenfisch, M. H. Biomaterials 2014, 35, 1716.  doi: 10.1016/j.biomaterials.2013.11.015

    112. [112]

      Lu, Y.; Slomberg, D. L.; Shah, A.; Schoenfisch, M. H. Biomacromolecules 2013, 14, 3589.  doi: 10.1021/bm400961r

    113. [113]

      Murray, T. S.; Okegbe, C.; Gao, Y.; Kazmierczak, B. I.; Motterlini, R.; Dietrich, L. E.; Bruscia, E. M. PLoS One 2012, 7, e35499.  doi: 10.1371/journal.pone.0035499

    114. [114]

      Nobre, L. S.; Al-Shahrour, F.; Dopazo, J.; Saraiva, L. M. Microbiology 2009, 155, 813.  doi: 10.1099/mic.0.023911-0

    115. [115]

      Desmard, M.; Davidge, K. S.; Bouvet, O.; Morin, D.; Roux, D.; Foresti, R.; Ricard, J. D.; Denamur, E.; Poole, R. K.; Montravers, P.; Motterlini, R.; Boczkowski, J. FASEB J. 2009, 23, 1023.  doi: 10.1096/fj.08-122804

    116. [116]

      Loboda, A.; Jazwa, A.; Wegiel, B.; Jozkowicz, A.; Dulak, J. Cell Mol. Biol. (Noisy-le-grand) 2005, 51, 347.
       

    117. [117]

      Chung, S. W.; Liu, X. L.; Macias, A. A.; Baron, R. M.; Perrella, M. A. J. Clin. Invest. 2008, 118, 239.  doi: 10.1172/JCI32730

    118. [118]

      Bang, C. S.; Kruse, R.; Johansson, K.; Persson, K. BMC Microbiology 2016, 16, 64.  doi: 10.1186/s12866-016-0678-7

    119. [119]

      Flanagan, L.; Steen, R. R.; Saxby, K.; Klatter, M.; Aucott, B. J.; Winstanley, C.; Fairlamb, I. J. S.; Lynam, J. M.; Parkin, A.; Friman, V.-P. Front. Microbiol. 2018, 9, 195.  doi: 10.3389/fmicb.2018.00195

    120. [120]

      Wilson, J. L.; Jesse, H. E.; Poole, R. K.; Davidge, K. S. Curr. Pharm. Biotechnol. 2012, 13, 760.  doi: 10.2174/138920112800399329

    121. [121]

      Li, B.; Zhang, X. Y.; Yang, J. Z.; Zhang, Y. J.; Li, W. X.; Fan, C. H.; Huang, Q. Int. J. Nanomed. 2014, 9, 4697.
       

    122. [122]

      Folkman, J. N. Engl. J. Med. 1971, 285, 1182.  doi: 10.1056/NEJM197111182852108

    123. [123]

      Calderon-Montano, J. M.; Burgos-Moron, E.; Orta, M. L.; Mateos, S.; Lopez-Lazaro, M. Planta Med. 2013, 79, 1017.  doi: 10.1055/s-00000058

    124. [124]

      Pompella, A.; Visvikis, A.; Paolicchi, A.; De Tata, V.; Casini, A. F. Biochem. Pharmacol. 2003, 66, 1499.  doi: 10.1016/S0006-2952(03)00504-5

    125. [125]

      Wu, X. Y.; Zhang, L.; Lü, D.; Liu, Y. H.; Chen, Y. N.; Su, W. J.; Luo, N.; Xiang, R. Acta Chim. Sinica 2013, 71, 299.  doi: 10.7503/cjcu20120233
       

    126. [126]

      Matsumura, Y.; Maeda, H. Cancer Res. 1986, 46, 6387.
       

    127. [127]

      Zheng, D. W.; Li, B.; Li, C. X.; Xu, L.; Fan, J. X.; Lei, Q.; Zhang, X. Z. Adv. Mater. 2017, 29, 1703822.  doi: 10.1002/adma.201703822

  • 加载中
    1. [1]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    2. [2]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    3. [3]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    4. [4]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    5. [5]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    6. [6]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    7. [7]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    8. [8]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    9. [9]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    10. [10]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    11. [11]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    12. [12]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    13. [13]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    14. [14]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    15. [15]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    16. [16]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    17. [17]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    18. [18]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    19. [19]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    20. [20]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

Metrics
  • PDF Downloads(91)
  • Abstract views(3709)
  • HTML views(1163)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return