Controlled Release of Carbon Monoxide Based on Nanomaterials and Their Biomedical Applications
- Corresponding author: Zhang Xia, zhangx89@ihep.ac.cn Wang Qing, qwang@sdust.edu.cn
Citation: Zhang Xiaolei, Tian Gan, Zhang Xia, Wang Qing, Gu Zhanjun. Controlled Release of Carbon Monoxide Based on Nanomaterials and Their Biomedical Applications[J]. Acta Chimica Sinica, ;2019, 77(5): 406-417. doi: 10.6023/A18120504
Queiroga, C. S.; Almeida, A. S.; Vieira, H. L. Biochem. Res. Int. 2012, 2012, 749845.
Haldane, J. B. S. Biochem. J. 1927, 21, 1068.
doi: 10.1042/bj0211068
Turner, M.; Hamilton-Farrell, M. R.; Clark, R. J. J. Accid. Emerg. Med. 1999, 16, 92.
doi: 10.1136/emj.16.2.92
Untereiner, A. A.; Wu, L.; Wang, R. Gasotransmitters: Physiology and Pathophysiology, Hermann, A.; Sitdikova, G. F.; Weiger, T. M., Berlin, Heidelberg, Springer, 2012, pp. 37~70.
Coburn, R. F. N. Engl. J. Med. 1970, 282, 207.
doi: 10.1056/NEJM197001222820407
Douglas, C. G.; Haldane, J. S.; Haldane, J. B. J. Physiol. 1912, 44, 275.
doi: 10.1113/jphysiol.1912.sp001517
Slebos, D. J.; Ryter, S. W.; Choi, A. M. Respir. Res. 2003, 4, 7.
doi: 10.1186/1465-9921-4-7
Foresti, R.; Hammad, J.; Clark, J. E.; Johnson, T. R.; Mann, B. E.; Friebe, A.; Green, C. J.; Motterlini, R. Br. J. Pharmacol. 2004, 142, 453.
doi: 10.1038/sj.bjp.0705825
Ma, X. L.; Sayed, N.; Beuve, A.; van den Akker, F. EMBO J. 2007, 26, 578.
doi: 10.1038/sj.emboj.7601521
Rodriguez, A. I.; Gangopadhyay, A.; Kelley, E. E.; Pagano, P. J.; Zuckerbraun, B. S.; Bauer, P. M. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 98.
doi: 10.1161/ATVBAHA.109.197822
Garcia-Gallego, S.; Bernardes, G. J. Angew. Chem., Int. Ed. 2014, 53, 9712.
doi: 10.1002/anie.201311225
Donegan, S. E.; Naples, K. M. Cancer Pract. 2002, 10, 53.
doi: 10.1046/j.1523-5394.2002.101008.x
Ling, K.; Men, F.; Wang, W. C.; Zhou, Y. Q.; Zhang, H. W.; Ye, D. W. J. Med. Chem. 2018, 61, 2611.
doi: 10.1021/acs.jmedchem.6b01153
Motterlini, R.; Clark, J. E.; Foresti, R.; Sarathchandra, P.; Mann, B. E.; Green, C. J. Circ. Res. 2002, 90, E17.
Zuckerbraun, B. S.; Chin, B. Y.; Bilban, M.; d'Avila, J. C.; Rao, J.; Billiar, T. R.; Otterbein, L. E. FASEB J. 2007, 21, 1099.
doi: 10.1096/fj.06-6644com
Parr, S. R.; Wilson, M. T.; Greenwood, C. Biochem. J. 1975, 151, 51.
doi: 10.1042/bj1510051
Brunori, M.; Parr, S. R.; Greenwood, C.; Wilson, M. T. Biochem. J. 1975, 151, 185.
doi: 10.1042/bj1510185
Gorman, D.; Drewry, A.; Huang, Y. L.; Sames, C. Toxicol. 2003, 187, 25.
doi: 10.1016/S0300-483X(03)00005-2
Pitchumony, T. S.; Spingler, B.; Motterlini, R.; Alberto, R. Chimia 2008, 62, 277.
doi: 10.2533/chimia.2008.277
Motterlini, R.; Otterbein, L. E. Nat. Rev. Drug Discovery 2010, 9, 728.
doi: 10.1038/nrd3228
Sawle, P.; Foresti, R.; Mann, B. E.; Johnson, T. R.; Green, C. J.; Motterlini, R. Br. J. Pharmacol. 2005, 145, 800.
doi: 10.1038/sj.bjp.0706241
Inaba, H.; Fujita, K.; Ueno, T. Biomater. Sci. 2015, 3, 1423.
doi: 10.1039/C5BM00210A
Li, Y.; Shu, Y. Z.; Liang, M. W.; Xie, X. L.; Jiao, X. Y.; Wang, X.; Tang, B. Angew. Chem. Int. Ed. 2018, 57, 12415.
doi: 10.1002/anie.201805806
Sanvicens, N.; Marco, M. P. Trends Biotechnol. 2008, 26, 425.
doi: 10.1016/j.tibtech.2008.04.005
Bahrami, B.; Hojjat-Farsangi, M.; Mohammadi, H.; Anvari, E.; Ghalamfarsa, G.; Yousefi, M.; Jadidi-Niaragh, F. Immunol. Lett. 2017, 190, 64.
doi: 10.1016/j.imlet.2017.07.015
Ding, C. Z.; Li, Z. B. Mater. Sci. Eng., C 2017, 76, 1440.
doi: 10.1016/j.msec.2017.03.130
Wang, Z. Q.; Ciacchi, L. C.; Wei, G. Appl. Sci. 2017, 7, 1175.
doi: 10.3390/app7111175
Gu, Z. J.; Zhu, S.; Yan, L.; Zhao, F.; Zhao, Y. L. Adv. Mater. 2018, 1800662.
Kemp, J. A.; Shim, M. S.; Heo, C. Y.; Kwon, Y. J. Adv. Drug Delivery Rev. 2016, 98, 3.
doi: 10.1016/j.addr.2015.10.019
Blum, A. P.; Kammeyer, J. K.; Rush, A. M.; Callmann, C. E.; Hahn, M. E.; Gianneschi, N. C. J. Am. Chem. Soc. 2015, 137, 2140.
doi: 10.1021/ja510147n
Mo, R.; Gu, Z. Mater. Today 2016, 19, 274.
doi: 10.1016/j.mattod.2015.11.025
Gulzar, A.; Gai, S. L.; Yang, P. P.; Li, C. X.; Ansari, M. B.; Lin, J. J. Mater. Chem. B 2015, 3, 8599.
doi: 10.1039/C5TB00757G
Swietach, P.; Vaughan-Jones, R. D.; Harris, A. L.; Hulikova, A. Phil. Trans. R. Soc. B 2014, 369, 20130099.
doi: 10.1098/rstb.2013.0099
Kato, Y.; Ozawa, S.; Miyamoto, C.; Maehata, Y.; Suzuki, A.; Maeda, T.; Baba, Y. Cancer Cell Int. 2013, 13, 89.
doi: 10.1186/1475-2867-13-89
He, Q. J. Biomater. Sci. 2017, 5, 2226.
doi: 10.1039/C7BM00699C
Fan, W.; Yung, B. C.; Chen, X. Angew. Chem., Int. Ed. 2018, 57, 8383.
doi: 10.1002/anie.v57.28
Jin, Q.; Deng, Y. Y.; Jia, F.; Tang, Z.; Ji, J. Adv. Therap. 2018, 1800084.
Yin, X. F.; Liu, X. H.; Shen, L. H.; Jin, H.; Yang, P. Y. Acta Chim. Sinica 2015, 73, 337.
doi: 10.3866/PKU.WHXB201412101
Kim, C. K.; Lim, S. J. Arch. Pharm. Res. 2002, 25, 229.
doi: 10.1007/BF02976620
Li, Z. T.; Yu, G. C.; Yang, J. Org. Chem. Front. 2017, 4, 115.
doi: 10.1039/C6QO00579A
Shao, W.; Liu, X.; Wang, T. T.; Hu, X. Y. Chin. J. Org. Chem. 2018, 38, 1107.
Zhang, B.; Chang, B. S.; Sun, T. L. Acta Chim. Sinica 2018, 76, 35.
Li, Z. Y.; Hu, X. Y.; Jiang, J. L.; Zhang, D. M.; Xiao, S. J.; Lin, C.; Wang, L. Y. Chin. J. Org. Chem. 2018, 38, 29.
Motterlini, R.; Sawle, P.; Hammad, J.; Bains, S.; Alberto, R.; Foresti, R.; Green, C. J. FASEB J. 2005, 19, 284.
doi: 10.1096/fj.04-2169fje
Chang, Y. J.; Liu, X. Z.; Zhao, Q.; Yang, X. H.; Wang, K. M.; Wang, Q.; Lin, M.; Yang, M. Chin. Chem. Lett. 2015, 26, 1203.
doi: 10.1016/j.cclet.2015.08.005
Gu, Z.; Dang, T. T.; Ma, M.; Tang, B. C.; Cheng, H.; Jiang, S.; Dong, Y.; Zhang, Y.; Anderson, D. G. ACS Nano 2013, 7, 6758.
doi: 10.1021/nn401617u
Nguyen, D.; Adnan, N. N.; Oliver, S.; Boyer, C. Macromol. Rapid Commun. 2016, 37, 739.
doi: 10.1002/marc.201500755
Lopez-Lazaro, M. FASEB J. 2006, 20, 828.
doi: 10.1096/fj.05-5168hyp
Fan, W. P.; Bu, W. B.; Shen, B.; He, Q. J.; Cui, Z. W.; Liu, Y. Y.; Zheng, X. P.; Zhao, K. L.; Shi, J. L. Adv. Mater. 2015, 27, 4155.
doi: 10.1002/adma.v27.28
Liu, T. P.; Wu, S. H.; Chen, Y. P.; Chou, C. M.; Chen, C. T. Nanoscale 2015, 7, 6471.
doi: 10.1039/C4NR07421A
Suliman, H. B.; Carraway, M. S.; Tatro, L. G.; Piantadosi, C. A. J. Cell Sci. 2007, 120, 299.
doi: 10.1242/jcs.03318
Veal, E. A.; Day, A. M.; Morgan, B. A. Mol. Cell 2007, 26, 1.
doi: 10.1016/j.molcel.2007.03.016
Senturker, S.; Karahalil, B.; Inal, M.; Yilmaz, H.; Muslumanoglu, H.; Gedikoglu, G.; Dizdaroglu, M. FEBS Lett. 1997, 416, 286.
doi: 10.1016/S0014-5793(97)01226-X
Jin, Z. K.; Wen, Y. Y.; Xiong, L. W.; Yang, T.; Zhao, P. H.; Tan, L. W.; Wang, T. F.; Qian, Z. Y.; Su, B. L.; He, Q. J. Chem. Commun. 2017, 53, 5557.
doi: 10.1039/C7CC01576C
Jin, Z. K.; Zhao, P. H.; Zhang, J. H.; Yang, T.; Zhou, G. X.; Zhang, D. H.; Wang, T. F.; He, Q. J. Chem. Eur. J. 2018, 24, 11667.
doi: 10.1002/chem.v24.45
Wu, L. H.; Cai, X. J.; Zhu, H. F.; Li, J. H.; Shi, D. X.; Su, D. F.; Yue, D.; Gu, Z. W. Adv. Funct. Mater. 2018, 28, 1804324.
doi: 10.1002/adfm.v28.41
He, Q. J.; Chen, D. Y.; Fan, M. J. J. Inorg. Mater. 2018, 33, 811.
Gonzales, M. A.; Han, H.; Moyes, A.; Radinos, A.; Hobbs, A. J.; Coombs, N.; Oliver, S. R. J.; Mascharak, P. K. J. Mater. Chem. B 2014, 2, 2107.
doi: 10.1039/c3tb21309a
Govender, P.; Pai, S.; Schatzschneider, U.; Smith, G. S. Inorg. Chem. 2013, 52, 5470.
doi: 10.1021/ic400377k
Bohlender, C.; Glaser, S.; Klein, M.; Weisser, J.; Thein, S.; Neugebauer, U.; Popp, J.; Wyrwa, R.; Schiller, A. J. Mater. Chem. B 2014, 2, 1454.
doi: 10.1039/C3TB21649G
Bruckmann, N. E.; Wahl, M.; Reiss, G. J.; Kohns, M.; Watjen, W.; Kunz, P. C. Eur. J. Inorg. Chem. 2011, 2011, 4571.
Popova, M.; Soboleva, T.; Ayad, S.; Benninghoff, A. D.; Berreau, L. M. J. Am. Chem. Soc. 2018, 140, 9721.
doi: 10.1021/jacs.8b06011
Fujita, K.; Tanaka, Y.; Abe, S.; Ueno, T. Angew. Chem., Int. Ed. 2016, 55, 1056.
doi: 10.1002/anie.201506738
Dordelmann, G.; Meinhardt, T.; Sowik, T.; Krueger, A.; Schatzschneider, U. Chem. Commun. 2012, 48, 11528.
doi: 10.1039/c2cc36491c
Carmona, F. J.; Jimenez-Amezcua, I.; Rojas, S.; Romao, C. C.; Navarro, J. A. R.; Maldonado, C. R.; Barea, E. Inorg. Chem. 2017, 56, 10474.
doi: 10.1021/acs.inorgchem.7b01475
Chakraborty, I.; Carrington, S. J.; Hauser, J.; Oliver, S. R. J.; Mascharak, P. K. Chem. Mater. 2015, 27, 8387.
doi: 10.1021/acs.chemmater.5b03859
Zhang, X. D.; Tian, H.; He, J. H.; Cao, Y. Acta Chim. Sinica 2013, 71, 433.
Diring, S.; Carne-Sanchez, A.; Zhang, J.; Ikemura, S.; Kim, C.; Inaba, H.; Kitagawa, S.; Furukawa, S. Chem. Sci. 2017, 8, 2381.
doi: 10.1039/C6SC04824B
Pierri, A. E.; Huang, P. J.; Garcia, J. V.; Stanfill, J. G.; Chui, M.; Wu, G.; Zheng, N.; Ford, P. C. Chem. Commun. 2015, 51, 2072.
doi: 10.1039/C4CC06766E
Askes, S. H. C.; Reddy, G. U.; Wyrwa, R.; Bonnet, S.; Schiller, A. J. Am. Chem. Soc. 2017, 139, 15292.
doi: 10.1021/jacs.7b07427
He, Q. J.; Kiesewetter, D. O.; Qu, Y.; Fu, X.; Fan, J.; Huang, P.; Liu, Y. J.; Zhu, G. Z.; Liu, Y.; Qian, Z. Y.; Chen, X. Y. Adv. Mater. 2015, 27, 6741.
doi: 10.1002/adma.201502762
Tan, M. J.; Pan, H. C.; Tan, H. R.; Chai, J. W.; Lim, Q. F.; Wong, T. I.; Zhou, X.; Hong, Z. Y.; Liao, L. D.; Kong, K. V. Adv. Healthcare Mater. 2018, 7, 1870022.
doi: 10.1002/adhm.v7.5
Wei, Z. J.; Liu, G. X.; Dong, X. T.; Wang, J. X.; Yu, W. S. Acta Chim. Sinica 2014, 72, 257.
Zhang, X.; Guo, Z.; Liu, J.; Tian, G.; Chen, K.; Yu, S. C.; Gu, Z. J. Sci. Bull. 2017, 62, 985.
doi: 10.1016/j.scib.2017.06.010
Chen, H. B.; Gu, Z. J.; An, H. W.; Chen, C. Y.; Chen, J.; Cui, R.; Chen, S. Q.; Chen, W. H.; Chen, X. S.; Chen, X. Y.; Chen, Z.; Ding, B. Q.; Dong, Q.; Fan, Q.; Fu, T.; Hou, D. Y.; Jiang, Q.; Ke, H. T.; Jiang, X. Q.; Liu, G.; Li, S. P.; Li, T. Y.; Liu, Z.; Nie, G. J.; Ovais, M.; Pang, D. W.; Qiu, N. S.; Shen, Y. Q.; Tian, H. Y.; Wang, C.; Wang, H.; Wang, Z. Q.; Xu, H. P.; Xu, J. F.; Yang, X. L.; Zhu, S.; Zheng, X. C.; Zhang, X. Z.; Zhao, Y. B.; Tan, W. H.; Zhang, X.; Zhao, Y. L. Sci. China Chem. 2018, 61, 1503.
doi: 10.1007/s11426-018-9397-5
Lin, X. Y.; Wang, J. Acta Chim. Sinica 2017, 75, 979(in Chinese).
Li, W. P.; Su, C. H.; Tsao, L. C.; Chang, C. T.; Hsu, Y. P.; Yeh, C. S. ACS Nano 2016, 10, 11027.
doi: 10.1021/acsnano.6b05858
Cole, A. J.; Yang, V. C.; David, A. E. Trends Biotechnol. 2011, 29, 323.
doi: 10.1016/j.tibtech.2011.03.001
Williams, P. S.; Carpino, F.; Zborowski, M. Mol. Pharmaceutics 2009, 6, 1290.
doi: 10.1021/mp900018v
Pankhurst, Q. A.; Connolly, J.; Jones, S. K.; Dobson, J. J. Phys. D: Appl. Phys. 2003, 36, R167.
doi: 10.1088/0022-3727/36/13/201
Kunz, P. C.; Meyer, H.; Barthel, J.; Sollazzo, S.; Schmidt, A. M.; Janiak, C. Chem. Commun. 2013, 49, 4896.
doi: 10.1039/c3cc41411f
Meyer, H.; Winkler, F.; Kunz, P.; Schmidt, A. M.; Hamacher, A.; Kassack, M. U.; Janiak, C. Inorg. Chem. 2015, 54, 11236.
doi: 10.1021/acs.inorgchem.5b01675
Stone, J. R.; Marletta, M. A. Biochemistry 1994, 33, 5636.
doi: 10.1021/bi00184a036
Botros, F. T.; Navar, L. G. Am. J. Physiol. Heart Circ. Physiol. 2006, 291, H2772.
doi: 10.1152/ajpheart.00528.2006
Ramos, K. S.; Lin, H.; McGrath, J. J. Biochem. Pharmacol. 1989, 38, 1368.
doi: 10.1016/0006-2952(89)90347-X
Li, A. L.; Xi, Q.; Umstot, E. S.; Bellner, L.; Schwartzman, M. L.; Jaggar, J. H.; Leffler, C. W. Circ. Res. 2008, 102, 234.
doi: 10.1161/CIRCRESAHA.107.164145
Song, Y. C.; Liu, J. X.; Zhang, Y. Y.; Shi, W.; Ma, H. M. Acta Chim. Sinica 2013, 71, 1607.
Otterbein, L. E.; Bach, F. H.; Alam, J.; Soares, M.; Lu, H. T.; Wysk, M.; Davis, R. J.; Flavell, R. A.; Choi, A. M. Nat. Med. 2000, 6, 422.
doi: 10.1038/74680
Lee, T. S.; Tsai, H. L.; Chau, L. Y. J. Biol. Chem. 2003, 278, 19325.
doi: 10.1074/jbc.M300498200
Nguyen, D.; Nguyen, T. K.; Rice, S. A.; Boyer, C. Biomacromolecules 2015, 16, 2776.
doi: 10.1021/acs.biomac.5b00716
Motterlini, R.; Mann, B. E.; Foresti, R. Expert Opin. Investig. Drugs 2005, 14, 1305.
doi: 10.1517/13543784.14.11.1305
Mann, B. E. Medicinal Organometallic Chemistry. Topics in Organometallic Chemistry, Eds.: Jaouen, G.; Metzler-Nolte, N., Berlin, Heidelberg, Springer, 2010, Vol. 32, p. 247.
Ferrandiz, M. L.; Maicas, N.; Garcia-Arnandis, I.; Terencio, M. C.; Motterlini, R.; Devesa, I.; Joosten, L. A.; van den Berg, W. B.; Alcaraz, M. J. Ann. Rheum. Dis. 2008, 67, 1211.
Bathoorn, E.; Slebos, D. J.; Postma, D. S.; Koeter, G. H.; van Oosterhout, A. J.; van der Toorn, M.; Boezen, H. M.; Kerstjens, H. A. Eur. Respir. J. 2007, 30, 1131.
doi: 10.1183/09031936.00163206
Nowick, J. S.; Chung, D. M.; Maitra, K.; Maitra, S.; Stigers, K. D.; Sun, Y. J. Am. Chem. Soc. 2000, 122, 7654.
doi: 10.1021/ja001142w
Morse, D.; Pischke, S. E.; Zhou, Z.; Davis, R. J.; Flavell, R. A.; Loop, T.; Otterbein, S. L.; Otterbein, L. E.; Choi, A. M. J. Biol. Chem. 2003, 278, 36993.
doi: 10.1074/jbc.M302942200
Otterbein, L. E.; Choi, A. M. Am. J. Physiol. Lung Cell Mol. Physiol. 2000, 279, L1029.
doi: 10.1152/ajplung.2000.279.6.L1029
Pae, H. O.; Oh, G. S.; Choi, B. M.; Chae, S. C.; Kim, Y. M.; Chung, K. R.; Chung, H. T. J. Immunol. 2004, 172, 4744.
doi: 10.4049/jimmunol.172.8.4744
Song, R. P.; Zhou, Z. H.; Kim, P. K.; Shapiro, R. A.; Liu, F.; Ferran, C.; Choi, A. M.; Otterbein, L. E. J. Biol. Chem. 2004, 279, 44327.
doi: 10.1074/jbc.M406105200
Bani-Hani, M. G.; Greenstein, D.; Mann, B. E.; Green, C. J.; Motterlini, R. J. Pharmacol. Exp. Ther. 2006, 318, 1315.
doi: 10.1124/jpet.106.104729
Bani-Hani, K. E.; Bani-Hani, B. K. World J. Gastroenterol. 2006, 12, 1521.
doi: 10.3748/wjg.v12.i10.1521
Guillen, M. I.; Megias, J.; Clerigues, V.; Gomar, F.; Alcaraz, M. J. Rheumatol. 2008, 47, 1323.
doi: 10.1093/rheumatology/ken264
Hasegawa, U.; van der Vlies, A. J.; Simeoni, E.; Wandrey, C.; Hubbell, J. A. J. Am. Chem. Soc. 2010, 132, 18273.
doi: 10.1021/ja1075025
Van der Vlies, A. J.; Inubushi, R.; Uyama, H.; Hasegawa, U. Bioconjug. Chem. 2016, 27, 1500.
doi: 10.1021/acs.bioconjchem.6b00135
Qureshi, O. S.; Zeb, A.; Akram, M.; Kim, M. S.; Kang, J. H.; Kim, H. S.; Majid, A.; Han, I.; Chang, S. Y.; Bae, O. N.; Kim, J. K. Eur. J. Pharm. Biopharm. 2016, 108, 187.
doi: 10.1016/j.ejpb.2016.09.008
Fujita, K.; Tanaka, Y.; Sho, T.; Ozeki, S.; Abe, S.; Hikage, T.; Kuchimaru, T.; Kizaka-Kondoh, S.; Ueno, T. J. Am. Chem. Soc. 2014, 136, 16902.
doi: 10.1021/ja508938f
Fujita, K.; Tanaka, Y.; Abe, F.; Ueno, T. Angew. Chem., Int. Ed. 2016, 55, 1056.
doi: 10.1002/anie.201506738
Nobre, L. S.; Seixas, J. D.; Romao, C. C.; Saraiva, L. M. Antimicrob. Agents Chemother. 2007, 51, 4303.
doi: 10.1128/AAC.00802-07
Lu, Y.; Slomberg, D. L.; Schoenfisch, M. H. Biomaterials 2014, 35, 1716.
doi: 10.1016/j.biomaterials.2013.11.015
Lu, Y.; Slomberg, D. L.; Shah, A.; Schoenfisch, M. H. Biomacromolecules 2013, 14, 3589.
doi: 10.1021/bm400961r
Murray, T. S.; Okegbe, C.; Gao, Y.; Kazmierczak, B. I.; Motterlini, R.; Dietrich, L. E.; Bruscia, E. M. PLoS One 2012, 7, e35499.
doi: 10.1371/journal.pone.0035499
Nobre, L. S.; Al-Shahrour, F.; Dopazo, J.; Saraiva, L. M. Microbiology 2009, 155, 813.
doi: 10.1099/mic.0.023911-0
Desmard, M.; Davidge, K. S.; Bouvet, O.; Morin, D.; Roux, D.; Foresti, R.; Ricard, J. D.; Denamur, E.; Poole, R. K.; Montravers, P.; Motterlini, R.; Boczkowski, J. FASEB J. 2009, 23, 1023.
doi: 10.1096/fj.08-122804
Loboda, A.; Jazwa, A.; Wegiel, B.; Jozkowicz, A.; Dulak, J. Cell Mol. Biol. (Noisy-le-grand) 2005, 51, 347.
Chung, S. W.; Liu, X. L.; Macias, A. A.; Baron, R. M.; Perrella, M. A. J. Clin. Invest. 2008, 118, 239.
doi: 10.1172/JCI32730
Bang, C. S.; Kruse, R.; Johansson, K.; Persson, K. BMC Microbiology 2016, 16, 64.
doi: 10.1186/s12866-016-0678-7
Flanagan, L.; Steen, R. R.; Saxby, K.; Klatter, M.; Aucott, B. J.; Winstanley, C.; Fairlamb, I. J. S.; Lynam, J. M.; Parkin, A.; Friman, V.-P. Front. Microbiol. 2018, 9, 195.
doi: 10.3389/fmicb.2018.00195
Wilson, J. L.; Jesse, H. E.; Poole, R. K.; Davidge, K. S. Curr. Pharm. Biotechnol. 2012, 13, 760.
doi: 10.2174/138920112800399329
Li, B.; Zhang, X. Y.; Yang, J. Z.; Zhang, Y. J.; Li, W. X.; Fan, C. H.; Huang, Q. Int. J. Nanomed. 2014, 9, 4697.
Folkman, J. N. Engl. J. Med. 1971, 285, 1182.
doi: 10.1056/NEJM197111182852108
Calderon-Montano, J. M.; Burgos-Moron, E.; Orta, M. L.; Mateos, S.; Lopez-Lazaro, M. Planta Med. 2013, 79, 1017.
doi: 10.1055/s-00000058
Pompella, A.; Visvikis, A.; Paolicchi, A.; De Tata, V.; Casini, A. F. Biochem. Pharmacol. 2003, 66, 1499.
doi: 10.1016/S0006-2952(03)00504-5
Wu, X. Y.; Zhang, L.; Lü, D.; Liu, Y. H.; Chen, Y. N.; Su, W. J.; Luo, N.; Xiang, R. Acta Chim. Sinica 2013, 71, 299.
doi: 10.7503/cjcu20120233
Zheng, D. W.; Li, B.; Li, C. X.; Xu, L.; Fan, J. X.; Lei, Q.; Zhang, X. Z. Adv. Mater. 2017, 29, 1703822.
doi: 10.1002/adma.201703822
Simin Fang , Wei Huang , Guanghua Yu , Cong Wei , Mingli Gao , Guangshui Li , Hongjun Tian , Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023
Zunyuan Xie , Lijin Yang , Zixiao Wan , Xiaoyu Liu , Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137
Juan Yuan , Bin Zhang , Jinping Wu , Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014
Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
Haiyuan Wang , Yiming Tang , Haoran Guo , Guohui Chen , Yajing Sun , Chao Zhao , Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067
Min LI , Xianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065
Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023
Yu Wang , Shoulei Zhang , Tianming Lv , Yan Su , Xianyu Liu , Fuping Tian , Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035
Siyu HOU , Weiyao LI , Jiadong LIU , Fei WANG , Wensi LIU , Jing YANG , Ying ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469
Meng Lin , Hanrui Chen , Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
Yinyin Qian , Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051
Chunmei GUO , Weihan YIN , Jingyi SHI , Jianhang ZHAO , Ying CHEN , Quli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162