Citation: Meng Shuangyan, Yang Hongju, Zhu Nan, Yang Jiao, Yang Ruirui, Yang Zhiwang. Preparation and Photocatalytic Activity of BiOCl-ov/palygorskite Nanocomposites for the Selective Oxidation of Alcohols under Visible Light Irradiation[J]. Acta Chimica Sinica, ;2019, 77(5): 461-468. doi: 10.6023/A18120503 shu

Preparation and Photocatalytic Activity of BiOCl-ov/palygorskite Nanocomposites for the Selective Oxidation of Alcohols under Visible Light Irradiation

  • Corresponding author: Yang Zhiwang, yangzw@nwnu.edu.cn
  • Received Date: 17 December 2018
    Available Online: 28 May 2019

    Fund Project: the National Natural Science Foundation of China 21563026Project supported by the National Natural Science Foundation of China (No. 21563026), the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT15R56), and the Innovation Team Basic Scientific Research Project of Gansu Province (No. 1606RJIA324)the Program for Changjiang Scholars and Innovative Research Team in University IRT15R56the Innovation Team Basic Scientific Research Project of Gansu Province 1606RJIA324

Figures(10)

  • A series of BiOCl-ov/palygorskite (PGS) nanocomposites (abbreviated as x B/P, where x is the molar content of BiOCl-ov in the composites) were synthesized by simple one-step hydrothermal method. The structure, morphology and photoelectrochemical properties of the nanocomposites have been thoroughly characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), N2 adsorption-desorption, Fourier infrared spectroscopy (FT-IR), ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS), fluorescence spectroscopy (PL) and electrochemical impedance (EIS) spectra. As a typical rodlike natural mineral, PGS was commonly used as absorbent in many fields. Its photocatalytic properties was always ascribed to the defects in its crystal lattice after the acidic treatment, which would give contribution to the photoinduced electron conductions in its bulky nanoparticles. On the other hand, as a typical layered p-typed semiconductor, BiOCl-ov was widely used in many oxidations due to the many of oxygen vacancies existed in its nanostructure. The combination of rodlike PGS and layered BiOCl-ov could be successfully carried out through the formation of the nanocomposites due to their respective crystal structure as well as their catalytic activity. So the BiOCl-ov/PGS nanocomposites were well prepared according to the advantages of PGS and BiOCl-ov. With the carefully investigation of the structure of the nanocomposites, the results showed that the catalysts were successfully prepared. The structures of BiOCl-ov and PGS were all well remained after the preparing process. The photocatalytic activity of the prepared BiOCl-ov/PGS was detected through the selective oxidation of aromatic alcohols under visible-light conditions. It found that BiOCl-ov/PGS showed promising activity for the photocatalytic oxidation of alcohols under the irradiation of visible light. The conversion of 78% of benzalcohol as well as the selectivity of 86% of benzaldehyde was reached with the catalysis of the nanocomposites in the photocatalytic oxidation of benzalcohol. Some of the other substrates, including the derivatives of benzalcohol as well as diphenylmethanol could be well oxidized. Moreover, the nonaromatic substrate, that is, phenethyl alcohol, it was always thought to be not easy to be oxidized one, could also be oxidized to corresponding phenylacetaldehyde with high conversion (89%) and selectivity (99%). Meanwhile, the catalyst possessed well light stability. The photocatalytic mechanism of the oxidation was also investigated through the active species capturing experiments. It showed that the major active species of the oxidation system was ·O2- and ·OH radicals.
  • 加载中
    1. [1]

      Wu, Y.; Chen, Z.; Hu, L.; Jin, M.; Jiang, Y.; Yu, J.; Alejaldre, C.; Stevens, E.; Kim, K.; Maisonnier, D.; Kalashnikov, A.; Tobita, K.; Jackson, D.; Perrault, D. Nature Energy. 2016, 1, 16154.  doi: 10.1038/nenergy.2016.154

    2. [2]

      Huang, Q. Nucl. Fusion. 2017, 57, 086042.  doi: 10.1088/1741-4326/aa763f

    3. [3]

      Xiao, J. D.; Li, D.; Jiang, H. L. Sci. Sin. Chim. 2018, 48, 1058.  doi: 10.1360/N032018-00035

    4. [4]

      Tong, H.; Ouyang, S.; Bi, Y.; Umezawa, N.; Oshikiri, M.; Ye, J.; Adv. Mater. 2012, 24, 229.  doi: 10.1002/adma.201102554

    5. [5]

      Ran, J.; Zhang, J.; Yu, J.; Jaroniec, M.; Qiao, S. Z. Chem. Soc. Rev. 2014, 43, 7787.  doi: 10.1039/C3CS60425J

    6. [6]

      Liu, S. N.; Yuan, J. W.; Qu, L. B. Chin. J. Org. Chem. 2018, 38, 316.
       

    7. [7]

      Yu, W.; Ouyang, Y.; Xu, X. H.; Qing, F. L. Chin. J. Chem. 2018, 36, 1024.  doi: 10.1002/cjoc.201800318

    8. [8]

      Zhou, N. N.; Xu, P.; Li, W. P.; Cheng, Y. X.; Zhu, C. J. Acta Chim. Sinica 2017, 75, 60.
       

    9. [9]

      Rong, J.; Ni, C. F.; Wang, Y. Z.; Kuang, C. W.; Gu, Y. C.; Hu, J. B. Acta Chim. Sinica 2017, 75, 105.
       

    10. [10]

      Galán, E.; Mesa, J. M.; Sánchez, C. Appl. Clay Sci. 1994, 9, 293.  doi: 10.1016/0169-1317(94)90006-X

    11. [11]

      Wang, W. B.; Zhang, Z. F.; Tian, G. Y.; Wang, A. Q. RSC Adv. 2015, 5, 58107.  doi: 10.1039/C5RA05187H

    12. [12]

      Liu, J.; Zhang, G. K. Phys. Chem. Chem. Phys. 2014, 16, 8178.  doi: 10.1039/C3CP54146K

    13. [13]

      Zhang, J.; Chen, A. S.; Wang, L. H.; Li, X. A.; Hang, W. ACS Sustainable Chem. Eng. 2016, 4, 4601.  doi: 10.1021/acssuschemeng.6b00716

    14. [14]

      Fan, W. Q.; Yu, X. Q.; Song, S. Y.; Bai, H. Y.; Zhang, C.; Yan, D.; Liu, C. B.; Wang, Q.; Shi, W. D. Cryst. Eng. Comm. 2014, 16, 820.  doi: 10.1039/C3CE42001A

    15. [15]

      Jiang, J.; Zhao, K.; Xiao, X. Y.; Zhang, L. Z. J. Am. Chem. Soc. 2012, 134, 4473.  doi: 10.1021/ja210484t

    16. [16]

      Ding, J.; Dai, Z.; Qin, F.; Zhao, H. P.; Zhao, S.; Chen, R. Appl. Catal. B:Environ. 2017, 205, 281.  doi: 10.1016/j.apcatb.2016.12.018

    17. [17]

      Gao, X. Y.; Tang, G. B.; Peng, W.; Guo, Q.; Luo, Y. M. Chem. Eng. J. 2019, 360, 1320.  doi: 10.1016/j.cej.2018.10.216

    18. [18]

      Kijima, N.; Matano, K.; Saito, M.; Oikawa, T.; Konishi, T.; Yasuda, H.; Sato, T.; Yoshimura, Y. Appl. Catal. B Environ. 2001, 206, 237.  doi: 10.1016/S0926-860X(00)00598-6

    19. [19]

      Zhang, X. C.; Liu, X. X.; Fan, C. M.; Wang, Y. W.; Wang, Y. F.; Liang, Z. H. Appl. Catal. B Environ. 2013, 132, 332.

    20. [20]

      Mao, X. M.; Li, X. L.; Wang, Y.; Fan, C.; Zhang, H. Chem. Eng. J. 2014, 247, 241.  doi: 10.1016/j.cej.2014.02.020

    21. [21]

      Liu, C.; Zhou, J. L.; Su, J. Z.; Guo, L. J. Appl. Catal. B Environ. 2019, 241, 506.  doi: 10.1016/j.apcatb.2018.09.060

    22. [22]

      Li, H.; Qin, F.; Yang, Z. P.; Cui, X. M.; Wang, J. F.; Zhang, L. Z. J. Am. Chem. Soc. 2017, 139, 3513.  doi: 10.1021/jacs.6b12850

    23. [23]

      Li, H. Q.; Cui, Y. M.; Hong, W. S. Appl. Surf. Sci. 2013, 264, 581.  doi: 10.1016/j.apsusc.2012.10.068

    24. [24]

      Li, H. Q.; Jia, Q. F.; Cui, Y. M.; Fan, S. H. Mater. Lett. 2013, 107, 262.  doi: 10.1016/j.matlet.2013.06.019

    25. [25]

      Song, Z.; Dong, X. L.; Wang, N.; Zhu, L. H.; Luo, Z. H.; Fang, J. D.; Xiong, C. H. Chem. Eng. J. 2017, 317, 925.  doi: 10.1016/j.cej.2017.02.126

    26. [26]

      Chen, L.; Yin, S. F.; Luo, S. L.; Huang, R.; Zhang, Q.; Hong, T.; Au, C. T. Ind. Eng. Chem. Res. 2012, 51, 6760.  doi: 10.1021/ie300567y

    27. [27]

      Jin, X. L.; Li, Y. Z.; Qi, Y. X.; Yang, L. Q.; Zhao, G. H.; Hu, H. Y. J. Hazard. Mater. 2011, 180, 1672.

    28. [28]

      Yuan, Y. P.; Yin, L. S.; Cao, S. W.; Xu, G. S.; Li, C. H.; Xue, C. Appl. Catal. B Environ. 2015, 168-169, 572.
       

    29. [29]

      Xu, X. Q.; Liu, R. X.; Cui, Y. H.; Liang, X. X.; Lei, C.; Meng, S. Y.; Ma, Y. L.; Lei, Z. Q.; Yang, Z. W. Appl. Catal. B Environ. 2017, 210, 484.  doi: 10.1016/j.apcatb.2017.04.021

    30. [30]

      Leow, W. R.; Ng, W. K. H.; Peng, T.; Liu, X. F.; Li, B.; Shi, W. X.; Lum, Y. W.; Wang, X. T.; Lang, X. J.; Li, S. Z.; Mathews, N.; Ager, J. W.; Sum, T. C.; Hirao, H.; Chen, X. D. J. Am. Chem. Soc. 2017, 139, 269.  doi: 10.1021/jacs.6b09934

    31. [31]

      Zhang, G.; Kim. G.; Choi, W. Y. Energy Environ. Sci. 2014, 7, 954.  doi: 10.1039/c3ee43147a

    32. [32]

      Higashimoto, S. Y.; Kitao, N. Y.; Yoshida, N.; Sakura, T.; Azuma, M.; Ohue, H.; Sakata, Y. J. Catal. 2009, 266, 279.  doi: 10.1016/j.jcat.2009.06.018

    33. [33]

      Sha, Z.; Chan, H. S.; Wu, J. S. J. Hazard. Mater. 2015, 299, 132.  doi: 10.1016/j.jhazmat.2015.06.016

    34. [34]

      Bi, J. H.; Zhou, Z. Y.; Chen, M. Y.; Liang, S. J.; He, Y. H.; Zhang, Z. Z.; Wu, L. Appl. Surf. Sci. 2015, 349, 292.  doi: 10.1016/j.apsusc.2015.04.213

    35. [35]

      Su, L.; Ye, X.; Meng, S.; Fu, X.; Chen, S. Appl. Surf. Sci. 2016, 384, 161.  doi: 10.1016/j.apsusc.2016.04.084

    36. [36]

      Liu, L.; Ding, L.; Liu, Y. G.; An, W.; Lin, S. L.; Liang, Y. H.; Cui, W. Q. Appl. Catal. B:Environ. 2017, 201, 92.  doi: 10.1016/j.apcatb.2016.08.005

  • 加载中
    1. [1]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    2. [2]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    3. [3]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    4. [4]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    5. [5]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    6. [6]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    7. [7]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    8. [8]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    9. [9]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    10. [10]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    11. [11]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    12. [12]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    13. [13]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    14. [14]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    15. [15]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    16. [16]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    17. [17]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    18. [18]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    19. [19]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    20. [20]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

Metrics
  • PDF Downloads(12)
  • Abstract views(2168)
  • HTML views(396)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return