Research Progress of High-throughput Computational Screening of Metal-Organic Frameworks
- Corresponding author: Li Song, songli@hust.edu.cn † These authors contributed equally to this work
Citation: Liu Zhilu, Li Wei, Liu Hao, Zhuang Xudong, Li Song. Research Progress of High-throughput Computational Screening of Metal-Organic Frameworks[J]. Acta Chimica Sinica, ;2019, 77(4): 323-339. doi: 10.6023/A18120497
Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Nature 1999, 402, 276.
doi: 10.1038/46248
O'Keeffe, M.; Peskov, M. A.; Ramsden, S. J.; Yaghi, O. M. Acc. Chem. Res. 2008, 41, 1782.
doi: 10.1021/ar800124u
Férey, G. Chem. Soc. Rev. 2008, 37, 191.
doi: 10.1039/B618320B
Horike, S.; Shimomura, S.; Kitagawa, S. Nat. Chem. 2009, 1, 695.
doi: 10.1038/nchem.444
Murray, L. J.; Dinca, M.; Long, J. R. Chem. Soc. Rev. 2009, 38, 1294.
doi: 10.1039/b802256a
Sculley, J.; Yuan, D.; Zhou, H. C. Energy Environ. Sci. 2011, 4, 2721.
doi: 10.1039/c1ee01240a
Li, J. R.; Kuppler, R. J.; Zhou, H. C. Chem. Soc. Rev. 2009, 38, 1477.
doi: 10.1039/b802426j
Verma, S.; Mishra, A. K.; Kumar, J. Acc. Chem. Res. 2010, 43, 79.
doi: 10.1021/ar9001334
Li, J. R.; Sculley, J.; Zhou, H. C. Chem. Rev. 2012, 112, 869.
doi: 10.1021/cr200190s
Bae, Y. S.; Snurr, R. Q. Angew. Chem. 2011, 50, 11586.
doi: 10.1002/anie.201101891
Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. Chem. Soc. Rev. 2009, 38, 1330.
doi: 10.1039/b802352m
Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. Chem. Rev. 2012, 112, 1105.
doi: 10.1021/cr200324t
Horcajada, P.; Serre, C.; Vallet-Regí, M.; Sebban, M.; Taulelle, F.; Férey, G. Angew. Chem. 2006, 118, 6120.
doi: 10.1002/(ISSN)1521-3757
Rocca, J. D.; Liu, D. M.; Lin, W. B. Acc. Chem. Res. 2011, 44, 957.
doi: 10.1021/ar200028a
Bernini, M. C.; Fairen-Jimenez, D.; Pasinetti, M.; Ramirez-Pastor, A. J.; Snurr, R. Q. J. Mater. Chem. B 2014, 2, 766.
doi: 10.1039/C3TB21328E
Kent, C. A.; Mehl, B. P.; Ma, L.; Papanikolas, J. M.; Meyer, T. J.; Lin, W. B. J. Am. Chem. Soc. 2010, 132, 12767.
doi: 10.1021/ja102804s
Kent, C. A.; Liu, D.; Ma, L.; Papanikolas, J. M.; Meyer, T. J.; Lin, W. B. J. Am. Chem. Soc. 2011, 133, 12940.
doi: 10.1021/ja204214t
Lee, C. Y.; Farha, O. K.; Hong, B. J.; Sarjeant, A. A.; Nguyen, S. T.; Hupp, J. T. J. Am. Chem. Soc. 2011, 133, 15858.
Farrusseng, D.; Aguado, S.; Pinel, C. Angew. Chem. 2009, 48, 7502.
doi: 10.1002/anie.v48:41
Ma, L.; Abney, C.; Lin, W. B. Chem. Soc. Rev. 2009, 38, 1248.
doi: 10.1039/b807083k
Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Chem. Soc. Rev. 2009, 38, 1450.
doi: 10.1039/b807080f
Farha, O. K.; Shultz, A. M.; Sarjeant, A. A.; Nguyen, S. T.; Hupp, J. T. J. Am. Chem. Soc. 2011, 133, 5652.
doi: 10.1021/ja111042f
Colón, Y. J.; Fairen-Jimenez, D.; Wilmer, C. E.; Snurr, R. Q. J. Phys. Chem. C 2014, 118, 5383.
doi: 10.1021/jp4122326
de Pablo, J. J.; Jones, B.; Kovacs, C. L.; Ozolins, V.; Ramirez, A. P. Curr. Opin. Solid State Mater. Sci. 2014, 18, 99.
doi: 10.1016/j.cossms.2014.02.003
Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; Persson, K. A. APL Mater. 2013, 1, 011002.
doi: 10.1063/1.4812323
Gomez-Gualdron, D. A.; Gutov, O. V.; Krungleviciute, V.; Borah, B.; Mondloch, J. E.; Hupp, J. T.; Yildirim, T.; Farha, O. K.; Snurr, R. Q. Chem. Mater. 2014, 26, 5632.
doi: 10.1021/cm502304e
Chung, Y. G.; Camp, J.; Haranczyk, M.; Sikora, B. J.; Bury, W.; Krungleviciute, V.; Yildirim, T.; Farha, O. K.; Sholl, D. S.; Snurr, R. Q. Chem. Mater. 2014, 26, 6185.
doi: 10.1021/cm502594j
Fu, J.; Tian, Y.; Wu, J. Z. AIChE J. 2015, 61, 3012.
doi: 10.1002/aic.14877
Bobbitt, N. S.; Chen, J.; Snurr, R. Q. J. Phys. Chem. C 2016, 120, 27328.
doi: 10.1021/acs.jpcc.6b08729
Fu, J.; Liu, Y.; Tian, Y.; Wu, J. Z. J. Phys. Chem. C 2015, 119, 5374.
doi: 10.1021/jp505963m
Daff, T. D.; Woo, T. K. MRS Online Proc. Libr. 2014, 1523.
Li, S.; Chung, Y. G.; Simon, C. M.; Snurr, R. Q. J. Phys. Chem. Lett. 2017, 8, 6135.
doi: 10.1021/acs.jpclett.7b02700
Wu, D.; Wang, C. C.; Liu, B.; Liu, D. H.; Yang, Q. Y.; Zhong, C. L. AIChE J. 2012, 58, 2078.
doi: 10.1002/aic.v58.7
Wilmer, C. E.; Leaf, M.; Lee, C. Y.; Farha, O. K.; Hauser, B. G.; Hupp, J. T.; Snurr, R. Q. Nat. Chem. 2011, 4, 83.
Sumer, Z.; Keskin, S. Chem. Eng. Sci. 2017, 164, 108.
doi: 10.1016/j.ces.2017.02.010
Yang, W. Y.; Liang, H.; Qiao, Z. W. Acta Chim. Sinica 2018, 76, 785.
doi: 10.7503/cjcu20170618
Jiang, J. W. Curr. Opin. Chem. Eng. 2012, 1, 138.
doi: 10.1016/j.coche.2011.11.002
Moghadam, P. Z.; Li, A.; Wiggin, S. B.; Tao, A.; Maloney, A. G. P.; Wood, P. A.; Ward, S. C.; Fairen-Jimenez, D. Chem. Mater. 2017, 29, 2618.
doi: 10.1021/acs.chemmater.7b00441
Watanabe, T.; Sholl, D. S. Langmuir 2012, 28, 14114.
doi: 10.1021/la301915s
Allen, F. H. Acta Crystallogr. Sect. B:Struct. Sci. 2002, 58, 380.
doi: 10.1107/S0108768102003890
Willems, T. F.; Rycroft, C. H.; Kazi, M.; Meza, J. C.; Haranczyk, M. Microporous Mesoporous Mater. 2012, 149, 134.
doi: 10.1016/j.micromeso.2011.08.020
Hoshen, J.; Kopelman, R. Phys. Rev. B 1976, 14, 3438.
doi: 10.1103/PhysRevB.14.3438
Goldsmith, J.; Wong-Foy, A. G.; Cafarella, M. J.; Siegel, D. J. Chem. Mater. 2013, 25, 3373.
doi: 10.1021/cm401978e
Li, Z. J.; Xiao, G.; Yang, Q. Y.; Xiao, Y. L.; Zhong, C. L. Chem. Eng. Sci. 2014, 120, 59.
doi: 10.1016/j.ces.2014.08.003
The Computation-Ready, Experimental (CoRE) Metal-Organic Frameworks Database, http://gregchung.github.io/CoRE-MOFs/.
Lin, L. C.; Berger, A. H.; Martin, R. L.; Kim, J.; Swisher, J. A.; Jariwala, K.; Rycroft, C. H.; Bhown, A. S.; Deem, M. W.; Haranczyk, M.; Smit, B. Nat. Mater. 2012, 11, 633.
doi: 10.1038/nmat3336
Fernandez, M.; Boyd, P. G.; Daff, T. D.; Aghaji, M. Z.; Woo, T. K. J. Phys. Chem. Lett. 2014, 5, 3056.
doi: 10.1021/jz501331m
McDaniel, J. G.; Li, S.; Tylianakis, E.; Snurr, R. Q.; Schmidt, J. R. J. Phys. Chem. C 2015, 119, 3143.
doi: 10.1021/jp511674w
Gómez-Gualdrón, D. A.; Colón, Y. J.; Zhang, X.; Wang, T. C.; Chen, Y.-S.; Hupp, J. T.; Yildirim, T.; Farha, O. K.; Zhang, J.; Snurr, R. Q. Energy Environ. Sci. 2016, 9, 3279.
doi: 10.1039/C6EE02104B
Qiao, Z. W.; Xu, Q. S.; Cheetham, A. K.; Jiang, J. W. J. Phys. Chem. C 2017, 121, 22208.
doi: 10.1021/acs.jpcc.7b07758
Qiao, Z. W.; Xu, Q. S.; Jiang, J. W. J. Mater. Chem. A 2018, 6, 18898.
doi: 10.1039/C8TA04939D
Baburin, I. A.; Leoni, S. CrystEngComm 2010, 12, 2809.
doi: 10.1039/b926717d
Hayashi, H.; Côté, A. P.; Furukawa, H.; O'Keeffe, M.; Yaghi, O. M. Nat. Mater. 2007, 6, 501.
doi: 10.1038/nmat1927
Lewis, D. W.; Ruiz-Salvador, A. R.; Gómez, A.; Rodriguez-Albelo, L. M.; Coudert, F.-X.; Slater, B.; Cheetham, A. K.; Mellot-Draznieks, C. CrystEngComm 2009, 11, 2272.
doi: 10.1039/b912997a
Colon, Y. J.; Snurr, R. Q. Chem. Soc. Rev. 2014, 43, 5735.
doi: 10.1039/C4CS00070F
Kong, X. Q.; Deng, H. X.; Yan, F. Y.; Kim, J.; Swisher, J. A.; Smit, B.; Yaghi, O. M.; Reimer, J. A. Science 2013, 341, 882.
doi: 10.1126/science.1238339
Tong, M.; Lan, Y. S.; Yang, Q. Y.; Zhong, C. L. Green Energy Environ. 2018, 3, 107.
doi: 10.1016/j.gee.2017.09.004
Deem, M. W.; Pophale, R.; Cheeseman, P. A.; Earl, D. J. J. Phys. Chem. C 2009, 113, 21353.
doi: 10.1021/jp906984z
Pophale, R.; Cheeseman, P. A.; Deem, M. W. Phys. Chem. Chem. Phys. 2011, 13, 12407.
doi: 10.1039/c0cp02255a
Bouëssel du Bourg, L.; Ortiz, A. U.; Boutin, A.; Coudert, F.-X. APL Mater. 2014, 2, 124110.
doi: 10.1063/1.4904818
Edgar, M.; Mitchell, R.; Slawin, A. M. Z.; Lightfoot, P.; Wright, P. A. Chem. Eur. J. 2001, 7, 5168.
doi: 10.1002/(ISSN)1521-3765
Tian, C. B.; Chen, R. P.; He, C.; Li, W. J.; Wei, Q.; Zhang, X. D.; Du, S. W. Chem. Commun. (Camb.) 2014, 50, 1915.
doi: 10.1039/c3cc48325h
Sikora, B. J.; Wilmer, C. E.; Greenfield, M. L.; Snurr, R. Q. Chem. Sci. 2012, 3, 2217.
doi: 10.1039/c2sc01097f
Erucar, I.; Keskin, S. Front. Mater. 2018, 5, 4.
doi: 10.3389/fmats.2018.00004
Sarkisov, L.; Harrison, A. Mol. Simul. 2011, 37, 1248.
doi: 10.1080/08927022.2011.592832
First, E. L.; Gounaris, C. E.; Wei, J.; Floudas, C. A. Phys. Chem. Chem. Phys. 2011, 13, 17339.
doi: 10.1039/c1cp21731c
Alexandrov, E. V.; Blatov, V. A.; Kochetkov, A. V.; Proserpio, D. M. CrystEngComm 2011, 13, 3947.
doi: 10.1039/c0ce00636j
Becker, T. M.; Heinen, J.; Dubbeldam, D.; Lin, L. C.; Vugt, T. J. H. J. Phys. Chem. C 2017, 121, 4659.
doi: 10.1021/acs.jpcc.6b12052
McDaniel, J. G.; Schmidt, J. R. J. Phys. Chem. C 2012, 116, 14031.
doi: 10.1021/jp303790r
Mercado, R.; Vlaisayljevich, B.; Lin, L. C.; Lee, K.; Lee, Y.; Mason, J. A.; Xiao, D. J.; Gonzalez, M. I.; Kapelewski, M. T.; Neaton, J. B.; Smit, B. J. Phys. Chem. C 2016, 120, 12590.
doi: 10.1021/acs.jpcc.6b03393
Rappé, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard Ⅲ, W. A.; Skiff, W. M. J. Am. Chem. Soc. 1992, 114.25, 10024.
Mayo, S. L.; Olafson, B. D.; Goddard, W. A. J. Phys. Chem. 1990, 94, 8897.
doi: 10.1021/j100389a010
Grajciar, L.; Nachtigall, P.; Bludský, O.; Rubeš, M. J. Chem. Theory Comput. 2014, 11, 230.
Rappe, A. K.; Goddard Ⅲ, W. A. J. Phys. Chem. 1991, 95, 3358.
doi: 10.1021/j100161a070
Wilmer, C. E.; Kim, K. C.; Snurr, R. Q. J. Phys. Chem. Lett. 2012, 3, 2506.
doi: 10.1021/jz3008485
Xu, Q.; Zhong, C. L. J. Phys. Chem. C 2010, 114, 5035.
Kadantsev, E. S.; Boyd, P. G.; Daff, T. D.; Woo, T. K. J. Phys. Chem. Lett. 2013, 4, 3056.
doi: 10.1021/jz401479k
Li, S.; Chung, Y. G.; Snurr, R. Q. Langmuir 2016, 32, 10368.
doi: 10.1021/acs.langmuir.6b02803
Li, W.; Rao, Z. Z.; Chung, Y. G.; Li, S. ChemistrySelect 2017, 2, 9458.
doi: 10.1002/slct.201701934
Kresse, G.; Furthmüller, J. Comput. Mater. Sci. 1996, 6, 15.
doi: 10.1016/0927-0256(96)00008-0
Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169.
doi: 10.1103/PhysRevB.54.11169
Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, 558.
doi: 10.1103/PhysRevB.47.558
Kresse, G.; Hafner, J. Phys. Rev. B 1994, 49, 14251.
doi: 10.1103/PhysRevB.49.14251
Campaná, C.; Mussard, B.; Woo, T. K. J. Chem. Theory Comput. 2009, 5, 2866.
doi: 10.1021/ct9003405
Manz, T. A.; Sholl, D. S. J. Chem. Theory Comput. 2012, 8, 2844.
doi: 10.1021/ct3002199
Nazarian, D.; Camp, J. S.; Chung, Y. G.; Snurr, R. Q.; Sholl, D. S. Chem. Mater. 2016, 29, 2521.
Hirschfelder, J. O.; Curtiss, C. F.; Bird, R. B.; Mayer, M. G. Molecular Theory of Gases and Liquids, Wiley, New York, 1954.
Talu, O.; Myers, A. L. Colloids Surf. A 2001, 187, 83.
Yang, Q. Y.; Zhong, C. L. J. Phys. Chem. B 2005, 109, 11862.
doi: 10.1021/jp051903n
Wilmer, C. E.; Farha, O. K.; Bae, Y. S.; Hupp, J. T.; Snurr, R. Q. Energy Environ. Sci. 2012, 5, 9849.
doi: 10.1039/c2ee23201d
Fernandez, M.; Woo, T. K.; Wilmer, C. E.; Snurr, R. Q. J. Phys. Chem. C 2013, 117, 7681.
doi: 10.1021/jp4006422
Michels, A.; De Graaff, W.; Ten Seldam, C. A. Physica 1960, 26, 393.
doi: 10.1016/0031-8914(60)90029-X
Lamari, F. D.; Levesque, D. J. Chem. Phys. 1998, 109, 4981.
doi: 10.1063/1.477109
Gomez, D. A.; Toda, J.; Sastre, G. Phys. Chem. Chem. Phys. 2014, 16, 19001.
doi: 10.1039/C4CP01848F
Zhang, H. D.; Deria, P.; Farha, O. K.; Hupp, J. T.; Snurr, R. Q. Energy Environ. Sci. 2015, 8, 1501.
doi: 10.1039/C5EE00808E
Liu, Y.; Guo, F. Y.; Hu, J.; Zhao, S. L.; Liu, H. L.; Hu, Y. Chem. Eng. Sci. 2015, 137, 170.
doi: 10.1016/j.ces.2015.06.036
Buch, V.; Devlin, J. P. J. Chem. Phys. 1993, 98, 4195.
doi: 10.1063/1.465026
Guo, F. Y.; Liu, Y.; Hu, J.; Liu, H. L.; Hu, Y. Chem. Eng. Sci. 2016, 149, 14.
doi: 10.1016/j.ces.2016.04.027
Li, S.; Chung, Y. G.; Snurr, R. Q. Langmuir 2016, 32, 10368.
doi: 10.1021/acs.langmuir.6b02803
Moghadam, P. Z.; Fairen-Jimenez, D.; Snurr, R. Q. J. Mater. Chem. A 2016, 4, 529.
doi: 10.1039/C5TA06472D
Nazarian, D.; Camp, J. S.; Sholl, D. S. Chem. Mater. 2016, 28, 785.
doi: 10.1021/acs.chemmater.5b03836
Qiao, Z. W.; Peng, C. W.; Zhou, J.; Jiang, J. W. J. Mater. Chem. A 2016, 4, 15904.
doi: 10.1039/C6TA06262H
Altintas, C.; Keskin, S. Chem. Eng. Sci. 2016, 139, 49.
doi: 10.1016/j.ces.2015.09.019
Erucar, I.; Keskin, S. J. Membr. Sci. 2016, 514, 313.
doi: 10.1016/j.memsci.2016.04.070
Aghaji, M. Z.; Fernandez, M.; Boyd, P. G.; Daff, T. D.; Woo, T. K. Eur. J. Inorg. Chem. 2016, 2016, 4505.
doi: 10.1002/ejic.201600365
Fernandez, M.; Barnard, A. S. ACS Comb. Sci. 2016, 18, 243.
doi: 10.1021/acscombsci.5b00188
Chung, Y. G.; Gomez-Gualdron, D. A.; Li, P.; Leperi, K. T.; Deria, P.; Zhang, H. D.; Vermeulen, N. A.; Stoddart, J. F.; You, F. Q.; Hupp, J. T.; Farha, O. K.; Snurr, R. Q. Sci. Adv. 2016, 2, e1600909.
doi: 10.1126/sciadv.1600909
Chung, Y. G.; Bai, P.; Haranczyk, M.; Leperi, K. T.; Li, P.; Zhang, H. D.; Wang, T. C.; Duerinck, T.; You, F. Q.; Hupp, J. T.; Farha, O. K.; Siepmann, J. I.; Snurr, R. Q. Chem. Mater. 2017, 29, 6315.
doi: 10.1021/acs.chemmater.7b01565
Boato, G.; Casanova, G. Physica 1961, 27, 571.
doi: 10.1016/0031-8914(61)90072-6
Van Heest, T.; Teich-McGoldrick, S. L.; Greathouse, J. A.; Allendorf, M. D.; Sholl, D. S. J. Phys. Chem. C 2012, 116, 13183.
Pardakhti, M.; Moharreri, E.; Wanik, D.; Suib, S. L.; Srivastava, R. ACS Comb. Sci. 2017, 19, 640.
doi: 10.1021/acscombsci.7b00056
Borboudakis, G.; Stergiannakos, T.; Frysali, M.; Klontzas, E.; Tsamardinos, I.; Froudakis, G. E. npj Comput. Mater. 2017, 3, 1.
doi: 10.1038/s41524-016-0004-9
Kadioglu, O.; Keskin, S. Sep. Purif. Technol. 2018, 191, 192.
doi: 10.1016/j.seppur.2017.09.031
Martin, M. G.; Siepmann, J. I. J. Phys. Chem. B 1998, 102, 2569.
doi: 10.1021/jp972543+
Buch, V. J. Chem. Phys. 1994, 100, 7610.
doi: 10.1063/1.466854
Altintas, C.; Erucar, I.; Keskin, S. ACS Appl. Mater. Interfaces 2018, 10, 3668.
doi: 10.1021/acsami.7b18037
Budhathoki, S.; Ajayi, O.; Steckel, J. A.; Wilmer, C. E. Energy Environ. Sci. 2018, DOI:10.1039/c8ee02582g.
doi: 10.1039/c8ee02582g
Qiao, Z. W.; Xu, Q. S.; Jiang, J. W. J. Membr. Sci. 2018, 551, 47.
doi: 10.1016/j.memsci.2018.01.020
Anderson, R.; Rodgers, J.; Argueta, E.; Biong, A.; Gómez-Gualdrón, D. A. Chem. Mater. 2018, 30, 6325.
doi: 10.1021/acs.chemmater.8b02257
Potoff, J. J.; Siepmann, J. I. AIChE J. 2001, 47, 1676.
doi: 10.1002/(ISSN)1547-5905
Serratosa, J. M.; Gómez-Garre, P.; Gallardo, M. E.; Anta, B.; De Bernabé, D. B.-V.; Lindhout, D.; Augustijn, P. B.; Tassinari, C. A.; Michelucci, R.; Malafosse, A. Hum. Mol. Genet. 1999, 8, 345.
doi: 10.1093/hmg/8.2.345
Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J. Chem. Phys. 1983, 79, 926.
doi: 10.1063/1.445869
Horn, H. W.; Swope, W. C.; Pitera, J. W.; Madura, J. D.; Dick, T. J.; Hura, G. L.; Head-Gordon, T. J. Chem. Phys. 2004, 120, 9665.
doi: 10.1063/1.1683075
Raccuglia, P.; Elbert, K. C.; Adler, P. D.; Falk, C.; Wenny, M. B.; Mollo, A.; Zeller, M.; Friedler, S. A.; Schrier, J.; Norquist, A. J. Nature 2016, 533, 73.
doi: 10.1038/nature17439
Schalkoff, R. J. Artificial Neural Networks, McGraw-Hill, New York, 1997.
Gandara, F.; Furukawa, H.; Lee, S.; Yaghi, O. M. J. Am. Chem. Soc. 2014, 136, 5271.
doi: 10.1021/ja501606h
Koh, H. S.; Rana, M. K.; Wong-Foy, A. G.; Siegel, D. J. J. Phys. Chem. C 2015, 119, 13451.
doi: 10.1021/acs.jpcc.5b02768
Wang, X.; Fordham, S.; Zhou, H. C. ACS Symp. Ser. 2015, 1213, 173.
doi: 10.1021/symposium
Zhang, H.; Li, G. L.; Zhang, K. G.; Liao, C. Y. Acta Chim. Sinica 2017, 75, 841.
DOE targets for onboard hydrogen storage systems for light-duty vehicles, http://www1.eere.energy.gov/hydrogenandfuelcells/storage/pdfs/targets_onboard_hydro_storage.pdf.
The Toyota Fuel Cell Vehicle: a turning point from the inside out, http://www.toyota.com/mirai/fcv.html.
Total hydrogen station in Munich first to feature standard compressed H2 and BMW cryocompressed H2 technology, http://www.greencardcongress.com/2015/07/20150715.
Engineering an adsorbent based hydrogen storage system: What have we learned? https://www.energy.gov/sites/prod/files/2015/02/f19/fcto_h2_storage_summit_siegel.pdf.
Kale, C.; Gorak, A.; Schoenmakers, H. Int. J. Greenhouse Gas Control 2013, 17, 294.
doi: 10.1016/j.ijggc.2013.05.019
Jameson, C. J.; Jameson, A. K.; Lim, H. M. J. Chem. Phys. 1997, 107, 4364.
doi: 10.1063/1.474778
Ryan, P.; Farha, O. K.; Broadbelt, L. J.; Snurr, R. Q. AIChE J. 2011, 57, 1759.
doi: 10.1002/aic.v57.7
Wu, L. M.; Xiao, J.; Wu, Y.; Xian, S. K.; Miao, G.; Wang, H. H.; Li, Z. Langmuir 2014, 30, 1080.
doi: 10.1021/la404540j
Bian, L.; Li, W.; Wei, Z. Z.; Liu, X. W.; Li, S. Acta Chim. Sinica 2018, 76, 303.
doi: 10.3866/PKU.WHXB201708302
Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060
Youlin SI , Shuquan SUN , Junsong YANG , Zijun BIE , Yan CHEN , Li LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
Feng Zheng , Ruxun Yuan , Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
Xiaoling LUO , Pintian ZOU , Xiaoyan WANG , Zheng LIU , Xiangfei KONG , Qun TANG , Sheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
Wendian XIE , Yuehua LONG , Jianyang XIE , Liqun XING , Shixiong SHE , Yan YANG , Zhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050
Aiai WANG , Lu ZHAO , Yunfeng BAI , Feng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225
Shasha Ma , Zujin Yang , Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036
Huan ZHANG , Jijiang WANG , Guang FAN , Long TANG , Erlin YUE , Chao BAI , Xiao WANG , Yuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291
Jie ZHANG , Xin LIU , Zhixin LI , Yuting PEI , Yuqi YANG , Huimin LI , Zhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310
Weichen WANG , Chunhua GONG , Junyong ZHANG , Yanfeng BI , Hao XU , Jingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014