Citation: Liu Zhilu, Li Wei, Liu Hao, Zhuang Xudong, Li Song. Research Progress of High-throughput Computational Screening of Metal-Organic Frameworks[J]. Acta Chimica Sinica, ;2019, 77(4): 323-339. doi: 10.6023/A18120497 shu

Research Progress of High-throughput Computational Screening of Metal-Organic Frameworks

  • Corresponding author: Li Song, songli@hust.edu.cn
  • † These authors contributed equally to this work
  • Received Date: 12 December 2018
    Available Online: 8 April 2019

    Fund Project: Double first-class research funding of China-EU Institute for Clean and Renewable Energy ICARE-RP-2018-HYDRO-001Project supported by the National Natural Science Foundation of China (No. 51606081) and Double first-class research funding of China-EU Institute for Clean and Renewable Energy (No. ICARE-RP-2018-HYDRO-001)the National Natural Science Foundation of China 51606081

Figures(13)

  • During the past decades, extensive investigations on metal-organic frameworks (MOFs) with ultrahigh surface area for gas adsorption and separation have been reported. With the increasing number of possible MOFs, it has been a great challenge to discover high-performing MOFs of interest from numerous structures. High-throughput computational screening (HTCS) is a powerful tool to accelerate the development of MOFs for application of interest and explores the quantitative structure-property relationship (QSPR) to facilitate the rational design of top-performing MOFs. In this review, we summarize the MOF databases used for HTCS, mainly including MOFs collected from experimentally synthesized MOFs (i.e. eMOFs), and the hypothetical MOFs constructed by computer-aided tools (i.e. hMOFs). Moreover, there are currently two important screening strategies, molecular simulation and machine learning-based HTCS. A vast majority of HTCS have been performed by molecular simulations including grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations, in which the accuracy of force field parameters play a criticl role in the reliability of HTCS. GCMC is able to predict the adsorption performance of MOFs such as adsorption capacity, selectivity and heat of adsorption, whereas MD is commonly used to estimate the dynamic property of adsorbates, e.g. diffusion coefficient and permeability. Additionally, lattice GCMC and classical density functional theory (cDFT) are also highlighted for computational screening of MOFs in this review. Machine learning consisting of various algorithms is a recently developed strategy with high efficiency and low computational cost, which is a more powerful and promising technique in future. At last, the investigations on the utilization of HTCS in CH4 storage, H2 storage, CO2 capture and gas separation were outlined. By reviewing the recent research progress in HTCS, we pointed out the current challenges and opportunities for the furture development of HTCS for MOFs, which will be the major engine for the commercialization of MOFs in various applications of interests.
  • 加载中
    1. [1]

      Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Nature 1999, 402, 276.  doi: 10.1038/46248

    2. [2]

      O'Keeffe, M.; Peskov, M. A.; Ramsden, S. J.; Yaghi, O. M. Acc. Chem. Res. 2008, 41, 1782.  doi: 10.1021/ar800124u

    3. [3]

      Férey, G. Chem. Soc. Rev. 2008, 37, 191.  doi: 10.1039/B618320B

    4. [4]

      Horike, S.; Shimomura, S.; Kitagawa, S. Nat. Chem. 2009, 1, 695.  doi: 10.1038/nchem.444

    5. [5]

      Murray, L. J.; Dinca, M.; Long, J. R. Chem. Soc. Rev. 2009, 38, 1294.  doi: 10.1039/b802256a

    6. [6]

      Sculley, J.; Yuan, D.; Zhou, H. C. Energy Environ. Sci. 2011, 4, 2721.  doi: 10.1039/c1ee01240a

    7. [7]

      Li, J. R.; Kuppler, R. J.; Zhou, H. C. Chem. Soc. Rev. 2009, 38, 1477.  doi: 10.1039/b802426j

    8. [8]

      Verma, S.; Mishra, A. K.; Kumar, J. Acc. Chem. Res. 2010, 43, 79.  doi: 10.1021/ar9001334

    9. [9]

      Li, J. R.; Sculley, J.; Zhou, H. C. Chem. Rev. 2012, 112, 869.  doi: 10.1021/cr200190s

    10. [10]

      Bae, Y. S.; Snurr, R. Q. Angew. Chem. 2011, 50, 11586.  doi: 10.1002/anie.201101891

    11. [11]

      Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. Chem. Soc. Rev. 2009, 38, 1330.  doi: 10.1039/b802352m

    12. [12]

      Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. Chem. Rev. 2012, 112, 1105.  doi: 10.1021/cr200324t

    13. [13]

      Horcajada, P.; Serre, C.; Vallet-Regí, M.; Sebban, M.; Taulelle, F.; Férey, G. Angew. Chem. 2006, 118, 6120.  doi: 10.1002/(ISSN)1521-3757

    14. [14]

      Rocca, J. D.; Liu, D. M.; Lin, W. B. Acc. Chem. Res. 2011, 44, 957.  doi: 10.1021/ar200028a

    15. [15]

      Bernini, M. C.; Fairen-Jimenez, D.; Pasinetti, M.; Ramirez-Pastor, A. J.; Snurr, R. Q. J. Mater. Chem. B 2014, 2, 766.  doi: 10.1039/C3TB21328E

    16. [16]

      Kent, C. A.; Mehl, B. P.; Ma, L.; Papanikolas, J. M.; Meyer, T. J.; Lin, W. B. J. Am. Chem. Soc. 2010, 132, 12767.  doi: 10.1021/ja102804s

    17. [17]

      Kent, C. A.; Liu, D.; Ma, L.; Papanikolas, J. M.; Meyer, T. J.; Lin, W. B. J. Am. Chem. Soc. 2011, 133, 12940.  doi: 10.1021/ja204214t

    18. [18]

      Lee, C. Y.; Farha, O. K.; Hong, B. J.; Sarjeant, A. A.; Nguyen, S. T.; Hupp, J. T. J. Am. Chem. Soc. 2011, 133, 15858.

    19. [19]

      Farrusseng, D.; Aguado, S.; Pinel, C. Angew. Chem. 2009, 48, 7502.  doi: 10.1002/anie.v48:41

    20. [20]

      Ma, L.; Abney, C.; Lin, W. B. Chem. Soc. Rev. 2009, 38, 1248.  doi: 10.1039/b807083k

    21. [21]

      Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Chem. Soc. Rev. 2009, 38, 1450.  doi: 10.1039/b807080f

    22. [22]

      Farha, O. K.; Shultz, A. M.; Sarjeant, A. A.; Nguyen, S. T.; Hupp, J. T. J. Am. Chem. Soc. 2011, 133, 5652.  doi: 10.1021/ja111042f

    23. [23]

      Colón, Y. J.; Fairen-Jimenez, D.; Wilmer, C. E.; Snurr, R. Q. J. Phys. Chem. C 2014, 118, 5383.  doi: 10.1021/jp4122326

    24. [24]

      de Pablo, J. J.; Jones, B.; Kovacs, C. L.; Ozolins, V.; Ramirez, A. P. Curr. Opin. Solid State Mater. Sci. 2014, 18, 99.  doi: 10.1016/j.cossms.2014.02.003

    25. [25]

      Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; Persson, K. A. APL Mater. 2013, 1, 011002.  doi: 10.1063/1.4812323

    26. [26]

      Gomez-Gualdron, D. A.; Gutov, O. V.; Krungleviciute, V.; Borah, B.; Mondloch, J. E.; Hupp, J. T.; Yildirim, T.; Farha, O. K.; Snurr, R. Q. Chem. Mater. 2014, 26, 5632.  doi: 10.1021/cm502304e

    27. [27]

      Chung, Y. G.; Camp, J.; Haranczyk, M.; Sikora, B. J.; Bury, W.; Krungleviciute, V.; Yildirim, T.; Farha, O. K.; Sholl, D. S.; Snurr, R. Q. Chem. Mater. 2014, 26, 6185.  doi: 10.1021/cm502594j

    28. [28]

      Fu, J.; Tian, Y.; Wu, J. Z. AIChE J. 2015, 61, 3012.  doi: 10.1002/aic.14877

    29. [29]

      Bobbitt, N. S.; Chen, J.; Snurr, R. Q. J. Phys. Chem. C 2016, 120, 27328.  doi: 10.1021/acs.jpcc.6b08729

    30. [30]

      Fu, J.; Liu, Y.; Tian, Y.; Wu, J. Z. J. Phys. Chem. C 2015, 119, 5374.  doi: 10.1021/jp505963m

    31. [31]

      Daff, T. D.; Woo, T. K. MRS Online Proc. Libr. 2014, 1523.

    32. [32]

      Li, S.; Chung, Y. G.; Simon, C. M.; Snurr, R. Q. J. Phys. Chem. Lett. 2017, 8, 6135.  doi: 10.1021/acs.jpclett.7b02700

    33. [33]

      Wu, D.; Wang, C. C.; Liu, B.; Liu, D. H.; Yang, Q. Y.; Zhong, C. L. AIChE J. 2012, 58, 2078.  doi: 10.1002/aic.v58.7

    34. [34]

      Wilmer, C. E.; Leaf, M.; Lee, C. Y.; Farha, O. K.; Hauser, B. G.; Hupp, J. T.; Snurr, R. Q. Nat. Chem. 2011, 4, 83.

    35. [35]

      Sumer, Z.; Keskin, S. Chem. Eng. Sci. 2017, 164, 108.  doi: 10.1016/j.ces.2017.02.010

    36. [36]

      Yang, W. Y.; Liang, H.; Qiao, Z. W. Acta Chim. Sinica 2018, 76, 785.  doi: 10.7503/cjcu20170618
       

    37. [37]

      Jiang, J. W. Curr. Opin. Chem. Eng. 2012, 1, 138.  doi: 10.1016/j.coche.2011.11.002

    38. [38]

      Moghadam, P. Z.; Li, A.; Wiggin, S. B.; Tao, A.; Maloney, A. G. P.; Wood, P. A.; Ward, S. C.; Fairen-Jimenez, D. Chem. Mater. 2017, 29, 2618.  doi: 10.1021/acs.chemmater.7b00441

    39. [39]

      Watanabe, T.; Sholl, D. S. Langmuir 2012, 28, 14114.  doi: 10.1021/la301915s

    40. [40]

      Allen, F. H. Acta Crystallogr. Sect. B:Struct. Sci. 2002, 58, 380.  doi: 10.1107/S0108768102003890

    41. [41]

      Willems, T. F.; Rycroft, C. H.; Kazi, M.; Meza, J. C.; Haranczyk, M. Microporous Mesoporous Mater. 2012, 149, 134.  doi: 10.1016/j.micromeso.2011.08.020

    42. [42]

      Hoshen, J.; Kopelman, R. Phys. Rev. B 1976, 14, 3438.  doi: 10.1103/PhysRevB.14.3438

    43. [43]

      Goldsmith, J.; Wong-Foy, A. G.; Cafarella, M. J.; Siegel, D. J. Chem. Mater. 2013, 25, 3373.  doi: 10.1021/cm401978e

    44. [44]

      Li, Z. J.; Xiao, G.; Yang, Q. Y.; Xiao, Y. L.; Zhong, C. L. Chem. Eng. Sci. 2014, 120, 59.  doi: 10.1016/j.ces.2014.08.003

    45. [45]

      The Computation-Ready, Experimental (CoRE) Metal-Organic Frameworks Database, http://gregchung.github.io/CoRE-MOFs/.

    46. [46]

      Lin, L. C.; Berger, A. H.; Martin, R. L.; Kim, J.; Swisher, J. A.; Jariwala, K.; Rycroft, C. H.; Bhown, A. S.; Deem, M. W.; Haranczyk, M.; Smit, B. Nat. Mater. 2012, 11, 633.  doi: 10.1038/nmat3336

    47. [47]

      Fernandez, M.; Boyd, P. G.; Daff, T. D.; Aghaji, M. Z.; Woo, T. K. J. Phys. Chem. Lett. 2014, 5, 3056.  doi: 10.1021/jz501331m

    48. [48]

      McDaniel, J. G.; Li, S.; Tylianakis, E.; Snurr, R. Q.; Schmidt, J. R. J. Phys. Chem. C 2015, 119, 3143.  doi: 10.1021/jp511674w

    49. [49]

      Gómez-Gualdrón, D. A.; Colón, Y. J.; Zhang, X.; Wang, T. C.; Chen, Y.-S.; Hupp, J. T.; Yildirim, T.; Farha, O. K.; Zhang, J.; Snurr, R. Q. Energy Environ. Sci. 2016, 9, 3279.  doi: 10.1039/C6EE02104B

    50. [50]

      Qiao, Z. W.; Xu, Q. S.; Cheetham, A. K.; Jiang, J. W. J. Phys. Chem. C 2017, 121, 22208.  doi: 10.1021/acs.jpcc.7b07758

    51. [51]

      Qiao, Z. W.; Xu, Q. S.; Jiang, J. W. J. Mater. Chem. A 2018, 6, 18898.  doi: 10.1039/C8TA04939D

    52. [52]

      Baburin, I. A.; Leoni, S. CrystEngComm 2010, 12, 2809.  doi: 10.1039/b926717d

    53. [53]

      Hayashi, H.; Côté, A. P.; Furukawa, H.; O'Keeffe, M.; Yaghi, O. M. Nat. Mater. 2007, 6, 501.  doi: 10.1038/nmat1927

    54. [54]

      Lewis, D. W.; Ruiz-Salvador, A. R.; Gómez, A.; Rodriguez-Albelo, L. M.; Coudert, F.-X.; Slater, B.; Cheetham, A. K.; Mellot-Draznieks, C. CrystEngComm 2009, 11, 2272.  doi: 10.1039/b912997a

    55. [55]

      Colon, Y. J.; Snurr, R. Q. Chem. Soc. Rev. 2014, 43, 5735.  doi: 10.1039/C4CS00070F

    56. [56]

      Kong, X. Q.; Deng, H. X.; Yan, F. Y.; Kim, J.; Swisher, J. A.; Smit, B.; Yaghi, O. M.; Reimer, J. A. Science 2013, 341, 882.  doi: 10.1126/science.1238339

    57. [57]

      Tong, M.; Lan, Y. S.; Yang, Q. Y.; Zhong, C. L. Green Energy Environ. 2018, 3, 107.  doi: 10.1016/j.gee.2017.09.004

    58. [58]

      Deem, M. W.; Pophale, R.; Cheeseman, P. A.; Earl, D. J. J. Phys. Chem. C 2009, 113, 21353.  doi: 10.1021/jp906984z

    59. [59]

      Pophale, R.; Cheeseman, P. A.; Deem, M. W. Phys. Chem. Chem. Phys. 2011, 13, 12407.  doi: 10.1039/c0cp02255a

    60. [60]

      Bouëssel du Bourg, L.; Ortiz, A. U.; Boutin, A.; Coudert, F.-X. APL Mater. 2014, 2, 124110.  doi: 10.1063/1.4904818

    61. [61]

      Edgar, M.; Mitchell, R.; Slawin, A. M. Z.; Lightfoot, P.; Wright, P. A. Chem. Eur. J. 2001, 7, 5168.  doi: 10.1002/(ISSN)1521-3765

    62. [62]

      Tian, C. B.; Chen, R. P.; He, C.; Li, W. J.; Wei, Q.; Zhang, X. D.; Du, S. W. Chem. Commun. (Camb.) 2014, 50, 1915.  doi: 10.1039/c3cc48325h

    63. [63]

      Sikora, B. J.; Wilmer, C. E.; Greenfield, M. L.; Snurr, R. Q. Chem. Sci. 2012, 3, 2217.  doi: 10.1039/c2sc01097f

    64. [64]

      Erucar, I.; Keskin, S. Front. Mater. 2018, 5, 4.  doi: 10.3389/fmats.2018.00004

    65. [65]

      Sarkisov, L.; Harrison, A. Mol. Simul. 2011, 37, 1248.  doi: 10.1080/08927022.2011.592832

    66. [66]

      First, E. L.; Gounaris, C. E.; Wei, J.; Floudas, C. A. Phys. Chem. Chem. Phys. 2011, 13, 17339.  doi: 10.1039/c1cp21731c

    67. [67]

      Alexandrov, E. V.; Blatov, V. A.; Kochetkov, A. V.; Proserpio, D. M. CrystEngComm 2011, 13, 3947.  doi: 10.1039/c0ce00636j

    68. [68]

      Becker, T. M.; Heinen, J.; Dubbeldam, D.; Lin, L. C.; Vugt, T. J. H. J. Phys. Chem. C 2017, 121, 4659.  doi: 10.1021/acs.jpcc.6b12052

    69. [69]

      McDaniel, J. G.; Schmidt, J. R. J. Phys. Chem. C 2012, 116, 14031.  doi: 10.1021/jp303790r

    70. [70]

      Mercado, R.; Vlaisayljevich, B.; Lin, L. C.; Lee, K.; Lee, Y.; Mason, J. A.; Xiao, D. J.; Gonzalez, M. I.; Kapelewski, M. T.; Neaton, J. B.; Smit, B. J. Phys. Chem. C 2016, 120, 12590.  doi: 10.1021/acs.jpcc.6b03393

    71. [71]

      Rappé, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard Ⅲ, W. A.; Skiff, W. M. J. Am. Chem. Soc. 1992, 114.25, 10024.

    72. [72]

      Mayo, S. L.; Olafson, B. D.; Goddard, W. A. J. Phys. Chem. 1990, 94, 8897.  doi: 10.1021/j100389a010

    73. [73]

      Grajciar, L.; Nachtigall, P.; Bludský, O.; Rubeš, M. J. Chem. Theory Comput. 2014, 11, 230.

    74. [74]

      Rappe, A. K.; Goddard Ⅲ, W. A. J. Phys. Chem. 1991, 95, 3358.  doi: 10.1021/j100161a070

    75. [75]

      Wilmer, C. E.; Kim, K. C.; Snurr, R. Q. J. Phys. Chem. Lett. 2012, 3, 2506.  doi: 10.1021/jz3008485

    76. [76]

      Xu, Q.; Zhong, C. L. J. Phys. Chem. C 2010, 114, 5035.

    77. [77]

      Kadantsev, E. S.; Boyd, P. G.; Daff, T. D.; Woo, T. K. J. Phys. Chem. Lett. 2013, 4, 3056.  doi: 10.1021/jz401479k

    78. [78]

      Li, S.; Chung, Y. G.; Snurr, R. Q. Langmuir 2016, 32, 10368.  doi: 10.1021/acs.langmuir.6b02803

    79. [79]

      Li, W.; Rao, Z. Z.; Chung, Y. G.; Li, S. ChemistrySelect 2017, 2, 9458.  doi: 10.1002/slct.201701934

    80. [80]

      Kresse, G.; Furthmüller, J. Comput. Mater. Sci. 1996, 6, 15.  doi: 10.1016/0927-0256(96)00008-0

    81. [81]

      Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169.  doi: 10.1103/PhysRevB.54.11169

    82. [82]

      Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, 558.  doi: 10.1103/PhysRevB.47.558

    83. [83]

      Kresse, G.; Hafner, J. Phys. Rev. B 1994, 49, 14251.  doi: 10.1103/PhysRevB.49.14251

    84. [84]

      Campaná, C.; Mussard, B.; Woo, T. K. J. Chem. Theory Comput. 2009, 5, 2866.  doi: 10.1021/ct9003405

    85. [85]

      Manz, T. A.; Sholl, D. S. J. Chem. Theory Comput. 2012, 8, 2844.  doi: 10.1021/ct3002199

    86. [86]

      Nazarian, D.; Camp, J. S.; Chung, Y. G.; Snurr, R. Q.; Sholl, D. S. Chem. Mater. 2016, 29, 2521.

    87. [87]

      Hirschfelder, J. O.; Curtiss, C. F.; Bird, R. B.; Mayer, M. G. Molecular Theory of Gases and Liquids, Wiley, New York, 1954.

    88. [88]

      Talu, O.; Myers, A. L. Colloids Surf. A 2001, 187, 83.

    89. [89]

      Yang, Q. Y.; Zhong, C. L. J. Phys. Chem. B 2005, 109, 11862.  doi: 10.1021/jp051903n

    90. [90]

      Wilmer, C. E.; Farha, O. K.; Bae, Y. S.; Hupp, J. T.; Snurr, R. Q. Energy Environ. Sci. 2012, 5, 9849.  doi: 10.1039/c2ee23201d

    91. [91]

      Fernandez, M.; Woo, T. K.; Wilmer, C. E.; Snurr, R. Q. J. Phys. Chem. C 2013, 117, 7681.  doi: 10.1021/jp4006422

    92. [92]

      Michels, A.; De Graaff, W.; Ten Seldam, C. A. Physica 1960, 26, 393.  doi: 10.1016/0031-8914(60)90029-X

    93. [93]

      Lamari, F. D.; Levesque, D. J. Chem. Phys. 1998, 109, 4981.  doi: 10.1063/1.477109

    94. [94]

      Gomez, D. A.; Toda, J.; Sastre, G. Phys. Chem. Chem. Phys. 2014, 16, 19001.  doi: 10.1039/C4CP01848F

    95. [95]

      Zhang, H. D.; Deria, P.; Farha, O. K.; Hupp, J. T.; Snurr, R. Q. Energy Environ. Sci. 2015, 8, 1501.  doi: 10.1039/C5EE00808E

    96. [96]

      Liu, Y.; Guo, F. Y.; Hu, J.; Zhao, S. L.; Liu, H. L.; Hu, Y. Chem. Eng. Sci. 2015, 137, 170.  doi: 10.1016/j.ces.2015.06.036

    97. [97]

      Buch, V.; Devlin, J. P. J. Chem. Phys. 1993, 98, 4195.  doi: 10.1063/1.465026

    98. [98]

      Guo, F. Y.; Liu, Y.; Hu, J.; Liu, H. L.; Hu, Y. Chem. Eng. Sci. 2016, 149, 14.  doi: 10.1016/j.ces.2016.04.027

    99. [99]

      Li, S.; Chung, Y. G.; Snurr, R. Q. Langmuir 2016, 32, 10368.  doi: 10.1021/acs.langmuir.6b02803

    100. [100]

      Moghadam, P. Z.; Fairen-Jimenez, D.; Snurr, R. Q. J. Mater. Chem. A 2016, 4, 529.  doi: 10.1039/C5TA06472D

    101. [101]

      Nazarian, D.; Camp, J. S.; Sholl, D. S. Chem. Mater. 2016, 28, 785.  doi: 10.1021/acs.chemmater.5b03836

    102. [102]

      Qiao, Z. W.; Peng, C. W.; Zhou, J.; Jiang, J. W. J. Mater. Chem. A 2016, 4, 15904.  doi: 10.1039/C6TA06262H

    103. [103]

      Altintas, C.; Keskin, S. Chem. Eng. Sci. 2016, 139, 49.  doi: 10.1016/j.ces.2015.09.019

    104. [104]

      Erucar, I.; Keskin, S. J. Membr. Sci. 2016, 514, 313.  doi: 10.1016/j.memsci.2016.04.070

    105. [105]

      Aghaji, M. Z.; Fernandez, M.; Boyd, P. G.; Daff, T. D.; Woo, T. K. Eur. J. Inorg. Chem. 2016, 2016, 4505.  doi: 10.1002/ejic.201600365

    106. [106]

      Fernandez, M.; Barnard, A. S. ACS Comb. Sci. 2016, 18, 243.  doi: 10.1021/acscombsci.5b00188

    107. [107]

      Chung, Y. G.; Gomez-Gualdron, D. A.; Li, P.; Leperi, K. T.; Deria, P.; Zhang, H. D.; Vermeulen, N. A.; Stoddart, J. F.; You, F. Q.; Hupp, J. T.; Farha, O. K.; Snurr, R. Q. Sci. Adv. 2016, 2, e1600909.  doi: 10.1126/sciadv.1600909

    108. [108]

      Chung, Y. G.; Bai, P.; Haranczyk, M.; Leperi, K. T.; Li, P.; Zhang, H. D.; Wang, T. C.; Duerinck, T.; You, F. Q.; Hupp, J. T.; Farha, O. K.; Siepmann, J. I.; Snurr, R. Q. Chem. Mater. 2017, 29, 6315.  doi: 10.1021/acs.chemmater.7b01565

    109. [109]

      Boato, G.; Casanova, G. Physica 1961, 27, 571.  doi: 10.1016/0031-8914(61)90072-6

    110. [110]

      Van Heest, T.; Teich-McGoldrick, S. L.; Greathouse, J. A.; Allendorf, M. D.; Sholl, D. S. J. Phys. Chem. C 2012, 116, 13183.

    111. [111]

      Pardakhti, M.; Moharreri, E.; Wanik, D.; Suib, S. L.; Srivastava, R. ACS Comb. Sci. 2017, 19, 640.  doi: 10.1021/acscombsci.7b00056

    112. [112]

      Borboudakis, G.; Stergiannakos, T.; Frysali, M.; Klontzas, E.; Tsamardinos, I.; Froudakis, G. E. npj Comput. Mater. 2017, 3, 1.  doi: 10.1038/s41524-016-0004-9

    113. [113]

      Kadioglu, O.; Keskin, S. Sep. Purif. Technol. 2018, 191, 192.  doi: 10.1016/j.seppur.2017.09.031

    114. [114]

      Martin, M. G.; Siepmann, J. I. J. Phys. Chem. B 1998, 102, 2569.  doi: 10.1021/jp972543+

    115. [115]

      Buch, V. J. Chem. Phys. 1994, 100, 7610.  doi: 10.1063/1.466854

    116. [116]

      Altintas, C.; Erucar, I.; Keskin, S. ACS Appl. Mater. Interfaces 2018, 10, 3668.  doi: 10.1021/acsami.7b18037

    117. [117]

      Budhathoki, S.; Ajayi, O.; Steckel, J. A.; Wilmer, C. E. Energy Environ. Sci. 2018, DOI:10.1039/c8ee02582g.  doi: 10.1039/c8ee02582g

    118. [118]

      Qiao, Z. W.; Xu, Q. S.; Jiang, J. W. J. Membr. Sci. 2018, 551, 47.  doi: 10.1016/j.memsci.2018.01.020

    119. [119]

      Anderson, R.; Rodgers, J.; Argueta, E.; Biong, A.; Gómez-Gualdrón, D. A. Chem. Mater. 2018, 30, 6325.  doi: 10.1021/acs.chemmater.8b02257

    120. [120]

      Potoff, J. J.; Siepmann, J. I. AIChE J. 2001, 47, 1676.  doi: 10.1002/(ISSN)1547-5905

    121. [121]

      Serratosa, J. M.; Gómez-Garre, P.; Gallardo, M. E.; Anta, B.; De Bernabé, D. B.-V.; Lindhout, D.; Augustijn, P. B.; Tassinari, C. A.; Michelucci, R.; Malafosse, A. Hum. Mol. Genet. 1999, 8, 345.  doi: 10.1093/hmg/8.2.345

    122. [122]

      Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J. Chem. Phys. 1983, 79, 926.  doi: 10.1063/1.445869

    123. [123]

      Horn, H. W.; Swope, W. C.; Pitera, J. W.; Madura, J. D.; Dick, T. J.; Hura, G. L.; Head-Gordon, T. J. Chem. Phys. 2004, 120, 9665.  doi: 10.1063/1.1683075

    124. [124]

      Raccuglia, P.; Elbert, K. C.; Adler, P. D.; Falk, C.; Wenny, M. B.; Mollo, A.; Zeller, M.; Friedler, S. A.; Schrier, J.; Norquist, A. J. Nature 2016, 533, 73.  doi: 10.1038/nature17439

    125. [125]

      Schalkoff, R. J. Artificial Neural Networks, McGraw-Hill, New York, 1997.

    126. [126]

      Gandara, F.; Furukawa, H.; Lee, S.; Yaghi, O. M. J. Am. Chem. Soc. 2014, 136, 5271.  doi: 10.1021/ja501606h

    127. [127]

      Koh, H. S.; Rana, M. K.; Wong-Foy, A. G.; Siegel, D. J. J. Phys. Chem. C 2015, 119, 13451.  doi: 10.1021/acs.jpcc.5b02768

    128. [128]

      Wang, X.; Fordham, S.; Zhou, H. C. ACS Symp. Ser. 2015, 1213, 173.  doi: 10.1021/symposium

    129. [129]

      Zhang, H.; Li, G. L.; Zhang, K. G.; Liao, C. Y. Acta Chim. Sinica 2017, 75, 841.
       

    130. [130]

      DOE targets for onboard hydrogen storage systems for light-duty vehicles, http://www1.eere.energy.gov/hydrogenandfuelcells/storage/pdfs/targets_onboard_hydro_storage.pdf.

    131. [131]

      The Toyota Fuel Cell Vehicle: a turning point from the inside out, http://www.toyota.com/mirai/fcv.html.

    132. [132]

      Total hydrogen station in Munich first to feature standard compressed H2 and BMW cryocompressed H2 technology, http://www.greencardcongress.com/2015/07/20150715.

    133. [133]

      Engineering an adsorbent based hydrogen storage system: What have we learned? https://www.energy.gov/sites/prod/files/2015/02/f19/fcto_h2_storage_summit_siegel.pdf.

    134. [134]

      Kale, C.; Gorak, A.; Schoenmakers, H. Int. J. Greenhouse Gas Control 2013, 17, 294.  doi: 10.1016/j.ijggc.2013.05.019

    135. [135]

      Jameson, C. J.; Jameson, A. K.; Lim, H. M. J. Chem. Phys. 1997, 107, 4364.  doi: 10.1063/1.474778

    136. [136]

      Ryan, P.; Farha, O. K.; Broadbelt, L. J.; Snurr, R. Q. AIChE J. 2011, 57, 1759.  doi: 10.1002/aic.v57.7

    137. [137]

      Wu, L. M.; Xiao, J.; Wu, Y.; Xian, S. K.; Miao, G.; Wang, H. H.; Li, Z. Langmuir 2014, 30, 1080.  doi: 10.1021/la404540j

    138. [138]

      Bian, L.; Li, W.; Wei, Z. Z.; Liu, X. W.; Li, S. Acta Chim. Sinica 2018, 76, 303.  doi: 10.3866/PKU.WHXB201708302
       

  • 加载中
    1. [1]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    2. [2]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    3. [3]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    4. [4]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    5. [5]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    6. [6]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    7. [7]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    8. [8]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    9. [9]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    10. [10]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    11. [11]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    12. [12]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    13. [13]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    14. [14]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    15. [15]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    16. [16]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    17. [17]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    18. [18]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    19. [19]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    20. [20]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

Metrics
  • PDF Downloads(145)
  • Abstract views(4045)
  • HTML views(1276)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return