Citation: Wang Chen, Chen Rui, Song Lin, Zhang Naidong. Characteristics of Some Typical Inorganic Oxyacid Free Radicals[J]. Acta Chimica Sinica, ;2019, 77(3): 205-212. doi: 10.6023/A18120486 shu

Characteristics of Some Typical Inorganic Oxyacid Free Radicals

  • Corresponding author: Zhang Naidong, zhangnd@aliyun.com
  • Received Date: 6 December 2018
    Available Online: 13 March 2019

    Fund Project: the Open Project of the State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology QAK201503the National Natural Science Foundation of China 21673061Project supported by the National Natural Science Foundation of China (No. 21673061) and the Open Project of the State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (No. QAK201503)

Figures(2)

  • Carbonate radical, nitrate radical, phosphate radical and sulfate radical are all important intermediates of chemical reactions with oxidizing ability. They have a significant effect on the transfer of pollutants in natural environment. In this review, the redox potential, modes of production, detection methods of these radicals and the mechanisms of their reactions with organic compounds are introduced. It can be found that:these four radicals have different reaction rates with organic compounds because of their various redox potential; Carbonate radical is not a scavenger of hydroxyl radical. For some easily oxidized compounds, carbonate radical shows higher oxidizing ability than hydroxyl radical; Hydroxyl radicals can be converted into other four types of radicals. Meanwhile, these four types of radicals react with organic matters by electron transfer, hydrogen abstraction and addition, which is basically consistent with hydroxyl radicals. It can be predicted that the mechanism of organic compounds degradation by these four types of free radicals is similar with that of hydroxyl radicals. In the future, it is necessary to study the mutual conversion principles between these free radicals and hydroxyl radicals and the degradation mechanism of these radicals when reacting with some representative organic compounds.
  • 加载中
    1. [1]

      Stenman, D.; Carlsson, M.; Reitberger, T. J. Wood. Chem. Technol. 2005, 24, 83.  doi: 10.1081/WCT-200026553

    2. [2]

      Canonica, S.; Kohn, T.; Mac, M.; Real, F. J.; Wirz, J.; Von, G. U. Environ. Sci. Technol. 2005, 39, 9182.  doi: 10.1021/es051236b

    3. [3]

      Dell'Arciprete, M. L.; Soler, J. M.; Santos-Juanes, L.; Arques, A.; Mártire, D. O.; Furlong, J. P.; Gonzalez, M. C. Water Res. 2012, 46, 3479.  doi: 10.1016/j.watres.2012.03.051

    4. [4]

      Medinas, D. B.; Cerchiaro, G.; Trindade, D. F.; Augusto, O. Iubmb. Life. 2007, 59, 255.  doi: 10.1080/15216540701230511

    5. [5]

      Lu, C.; Lin, J. M. Catal. Today. 2004, 89, 343.  doi: 10.1016/j.cattod.2003.12.013

    6. [6]

      Ghalei, M.; Ma, J.; Schmidhammer, U.; Vandenborre, J.; Fattahi, M.; Mostafavi, M. J. Phys. Chem. B 2016, 120, 2434.  doi: 10.1021/acs.jpcb.5b12405

    7. [7]

      Wu, C.; Linden, K. G. Water Res. 2010, 44, 3585.  doi: 10.1016/j.watres.2010.04.011

    8. [8]

      Liu, Y.; He, X.; Duan, X.; Fatta-Kassinos, D.; Dionysiou, D. D. Water Res. 2016, 95, 195.  doi: 10.1016/j.watres.2016.03.011

    9. [9]

      Carena, L.; Vione, D. Environ. Chem. Lett. 2016, 14, 183.  doi: 10.1007/s10311-016-0549-3

    10. [10]

      Busset, C.; Mazellier, P.; Sarakha, M.; Laat, J. D. J. Photoch. Photobio. A 2007, 185, 127.  doi: 10.1016/j.jphotochem.2006.04.045

    11. [11]

      Zhao, T. Q.; Li, P.; Tai, C.; She, J. P.; Yin, Y. G.; Qi, Y. A.; Zhang, G. C. J. Hazard. Mater. 2018, 346, 42.  doi: 10.1016/j.jhazmat.2017.12.009

    12. [12]

      Bonini, M. G.; Radi, R.; Ferrersueta, G.; Ferreira, A. M.; Augusto, O. J. Biol. Chem. 1999, 274, 10802.  doi: 10.1074/jbc.274.16.10802

    13. [13]

      Chen, J. W.; Hu, B.; Qin, H. Y.; Ao, J. P.; Zhang, J.; Zhu, Z. Q. J. Radiat. Res. Radiat. 2006, 24, 137(in Chinese).

    14. [14]

      Larson, R. A.; Zepp, R. G. Environ. Toxicol. Chem. 2010, 7, 265.

    15. [15]

      Huang, J. P.; Mabury, S. A. Chemosphere 2000, 41, 1775.  doi: 10.1016/S0045-6535(00)00042-4

    16. [16]

      Karmakar, S.; Datta, A. J. Phys. Chem. B 2017, 121, 7621.  doi: 10.1021/acs.jpcb.7b05186

    17. [17]

      Zhang, R.; Sun, P.; Boyer, T. H.; Zhao, L.; Huang, C. Environ. Sci. Technol. 2015, 49, 3056.  doi: 10.1021/es504799n

    18. [18]

      Huang, J.; Mabury, S. A. Environ. Toxicol. Chem. 2000, 19, 1501.  doi: 10.1002/etc.v19:6

    19. [19]

      Mabury, S. A.; Crosby, D. G. J. Agr. Food. Chem. 1996, 44, 1920.  doi: 10.1021/jf950423y

    20. [20]

      Mazellier, P.; Leroy, É.; De Laat, J.; Legube, B. New J. Chem. 2002, 26, 1784.  doi: 10.1039/b204332g

    21. [21]

      Liu, T.; Yin, K.; Liu, C.; Luo, J.; Crittenden, J.; Zhang, W.; Luo, S.; He, Q.; Deng, Y.; Liu, H.; Zhang, D. Water Res. 2018, 147, 204.  doi: 10.1016/j.watres.2018.10.007

    22. [22]

      Mazellier, P.; Busset, C.; Delmont, A.; De Laat, J. Water Res. 2007, 41, 4585.  doi: 10.1016/j.watres.2007.06.066

    23. [23]

      Li, Y.; Li, L.; Chen, Z. X.; Zhang, J.; Gong, L.; Wang, Y. X.; Zhao, H. Q.; Mu, Y. Chemosphere 2018, 192, 372.  doi: 10.1016/j.chemosphere.2017.10.126

    24. [24]

      Poskrebyshev, G. A.; Neta, P.; Huie, R. E. J. Geophys. Res-Atmos. 2001, 106, 4995.  doi: 10.1029/2000JD900702

    25. [25]

      Wei, B.; Sun, J.; Mei, Q.; He, M. X. Comput. Theor. Chem. 2018, 1129, 1.  doi: 10.1016/j.comptc.2018.02.014

    26. [26]

      Liebmann, J.; Karu, E.; Sobanski, N. Atmos. Chem. Phys. 2018, 18, 1.  doi: 10.5194/acp-18-1-2018

    27. [27]

      Maranzana, A.; Ghigo, G.; Tonachini, G. Atmos. Environ. 2017, 167, 181.  doi: 10.1016/j.atmosenv.2017.08.011

    28. [28]

      Maguta, M. M.; Stenstrom, Y. H.; Nielsen, C. J. J. Phys. Chem. A 2016, 120, 6970.  doi: 10.1021/acs.jpca.6b05440

    29. [29]

      Musat, R.; Denisov, S. A.; Marignier, J. L.; Mostafavi, M. J. Phys. Chem. B 2018, 122, 2121.  doi: 10.1021/acs.jpcb.7b12702

    30. [30]

      de Sémainville, P. G.; Hoffmann, D.; George, C.; Herrmann, H. Phys. Chem. Chem. Phys. 2007, 9, 958.  doi: 10.1039/B613956F

    31. [31]

      Jin, S.; Bi, W.; Li, S.; Dong, W.; Chen, J. J. Phys. Chem. A 2017, 121, 3461.  doi: 10.1021/acs.jpca.6b08626

    32. [32]

      Exner, M.; Herrmann, H.; Zellner, R. Berichte Der Bunsengesellschaft Für Physikalische Chemie. 2010, 96, 470.
       

    33. [33]

      Mezyk, S. P.; Cullen, T. D.; Rickman, K. A.; Mincher, B. J. Int. J. Chem. Kinet. 2017, 49, 635.  doi: 10.1002/kin.2017.49.issue-9

    34. [34]

      Katsumura, Y.; Jiang, P. Y.; Nagaishi, R.; Oishi, T.; Ishigure, K.; Yoshida, Y. J. Phys. Chem (United States). 1991, 95, 4435.

    35. [35]

      Wine, P. H.; Iii, R. L. M.; Thorn, R. P. J. Phys. Chem. 1988, 92, 1156.  doi: 10.1021/j100316a031

    36. [36]

      Jarke, F. H.; Ashford, N. A. J. Chem. Phys. 1975, 62, 2923.  doi: 10.1063/1.430802

    37. [37]

      Wayne, R. P.; Barnes, I.; Biggs, P.; Burrows, J. P. Atmos. Environ. A 1991, 25, 1.

    38. [38]

      Wan, L. K.; Peng, J.; Lin, M. Z.; Muroya, Y.; Katsumura, Y.; Fu, J. Y. Radiat. Phys. Chem. 2012, 81, 524.  doi: 10.1016/j.radphyschem.2012.01.025

    39. [39]

      Nguyen, T. L.; Park, J.; Lee, K.; Song, K.; Barker, J. R. J. Phys. Chem. A 2011, 115, 4894.  doi: 10.1021/jp200460b

    40. [40]

      Neta, P.; Huie, R. E. Meat Technology 1986, 90, 4644.

    41. [41]

      Umschlag, T.; Zellner, R.; Herrmann, H. Phys. Chem. Chem. Phys. 2002, 4, 2975.  doi: 10.1039/b110263j

    42. [42]

      Dong, W. B.; Zhu, C. Z.; Fang, H. J.; Ouyang, B.; Zhang, R. X.; Hou, H. Q. Acta Chim. Sinica 2005, 63, 2147(in Chinese).
       

    43. [43]

      Ito, O.; Seiji, A.; Masashi, I. J. Org. Chem. 1989, 54, 2436.  doi: 10.1021/jo00271a038

    44. [44]

      Alfassi, Z. B.; Padmaja, S.; Neta, P.; Huie, R. E. J. Phys. Chem. 1993, 97, 3780.  doi: 10.1021/j100117a025

    45. [45]

      Mártire, D. O.; Gonzalez, C. Prog. React. Kinet. Mec. 2001, 26, 201.  doi: 10.3184/007967401103165253

    46. [46]

      Brusa, M. A.; Grela, M. A. Phys. Chem. Chem. Phys. 2003, 5, 3294.  doi: 10.1039/b302296j

    47. [47]

      Criado, S.; Marioli, J. M.; Allegretti, P. E.; Furlong, J.; Nieto, F. J. R.; Mártire, D. O.; Garcia, N. A. J. Photochem. Photobiol. B 2001, 65, 74.  doi: 10.1016/S1011-1344(01)00239-1

    48. [48]

      Kumar, M. R.; Adinarayana, M. J. Chem. Sci. 2000, 112, 551.  doi: 10.1007/BF02709288

    49. [49]

      Kumar, M. R.; Rao, M. T.; Adinarayana, M. Indian J. Biochem. Bio. 2000, 37, 13.

    50. [50]

      Huber, J. R.; Hayon, E. J. Phys. Chem. 1968, 71, 3820.

    51. [51]

      Black, E. D.; Hayon, E. J. Phys. Chem. 1970, 74, 3199.  doi: 10.1021/j100711a007

    52. [52]

      Ma, J.; Schmidhammer, U.; Mostafavi, M. J. Phys. Chem. B 2015, 119, 7180.

    53. [53]

      Caregnato, P.; Bertolotti, S. G.; Gonzalez, M. C.; Mártire, D. O. Photochem. Photobiol. 2005, 81, 1526.  doi: 10.1562/2005-07-07-RA-603

    54. [54]

      Meng, J.; Xiong, X.; Zhang, X.; Xu, Y. Appl. Surf. Sci. 2018, 437, 859.

    55. [55]

      Subramanian, P. J.; Rajaram, J.; Ramakrishnan, V. Indian J. Chem. 1991, 30, 913.

    56. [56]

      Maruthamuthu, P.; Taniguchi, H. J. Phys. Chem. (United States) 1977, 81, 1944.

    57. [57]

      Maruthamuthu, P. J. Chem. Soc., Faraday Trans. 11985, 81, 1979.  doi: 10.1039/f19858101979

    58. [58]

      Villata, L. S.; Gonzalez, M. C.; Mártire, D. O. Int. J. Chem. Kinet. 2010, 42, 391.  doi: 10.1002/kin.v42:7

    59. [59]

      Rosso, J. A.; Allegretti, P. E.; Mártire, D. O.; Gonzalez, M. C. J. Chem. Soc., Perkin Trans. 21999, 2, 205.

    60. [60]

      Neta, P.; Huie, R. E.; Ross, A. B. J. Phys. Chem. Ref. Data 1988, 17, 1027.  doi: 10.1063/1.555808

    61. [61]

      Khan, J. A.; He, X.; Khan, H. M.; Dionysiou, D. D. Chem. Eng. J. 2013, 218, 376.  doi: 10.1016/j.cej.2012.12.055

    62. [62]

      Wang, A. J.; He, J. M.; Kong, L. N.; Zhang, N. D. Res. Chem. Intermed. 2017, 43, 2175.  doi: 10.1007/s11164-016-2753-y

    63. [63]

      Oncu, N. B.; Mercan, N.; Balcioglu, I. A. Chem. Eng. J. 2015, 259, 972.  doi: 10.1016/j.cej.2014.08.066

    64. [64]

      Liang, Q.; Duan, Y. M.; Wu, B. B.; Zhang, N. D. J. Adv. Oxid. Technol. 2016, 19, 372.

    65. [65]

      Anipsitakis, G. P.; Dionysiou, D. D. Environ. Sci. Technol. 2004, 38, 3705.  doi: 10.1021/es035121o

    66. [66]

      Lou, X. Y.; Guo, Y. G.; Xiao, D. X. Environ. Sci. Pollut. R. 2013, 20, 6317.  doi: 10.1007/s11356-013-1678-x

    67. [67]

      Zhang, N. D.; Zhu, Z. J.; Luan, W. L. Acta Chim. Sinica 2011, 69, 2307(in Chinese).
       

    68. [68]

      He, J. M.; Kong, L. N.; Liang, Q.; Zhang, N. D. China Environ. Sci. 2016, 36, 2638(in Chinese).

    69. [69]

      Wang, B.; Li, J.; Mo, Z. P.; Xian, B. Environ. Eng. 2012, 30, 53(in Chinese).

    70. [70]

      Liu, H. X.; Zhang, N. D.; Zhu, Z. J. Chin. Sci. Bull. 2012, 57, 3493(in Chinese).

    71. [71]

      Liu, C.; Wu, B.; Chen, X. E. Chem. Eng. J. 2018, 335, 865.  doi: 10.1016/j.cej.2017.10.162

    72. [72]

      Tang, Y.; Thorn, R. P.; Iii, R. L. M. J. Photoch. Photobio. A 1988, 44, 243.  doi: 10.1016/1010-6030(88)80097-2

    73. [73]

      Morimoto, S.; Ito, T.; Fujita, S. I. Chem. Phys. Lett. 2008, 461, 300.  doi: 10.1016/j.cplett.2008.07.013

    74. [74]

      Huang, Y. F.; Huang, Y. H. J. Hazard. Mater. 2009, 162, 1211.  doi: 10.1016/j.jhazmat.2008.06.008

    75. [75]

      Clément, J. L.; Gilbert, B. C.; Ho, W. F.; Jackson, N. D.; Newton, M. S.; Silvester, S.; Timmins, G. S.; Tordo, P.; Whitwood, A. C. J. Chem. Soc., Perkin Trans. 21998, 8, 1715.

    76. [76]

      Chawla, O. P.; Fessenden, R. W. J. Phys. Chem. 1975, 79, 2693.  doi: 10.1021/j100591a020

  • 加载中
    1. [1]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    2. [2]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    3. [3]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    4. [4]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    5. [5]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    6. [6]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    7. [7]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    8. [8]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    9. [9]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    10. [10]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    11. [11]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    12. [12]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    13. [13]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    14. [14]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    15. [15]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    16. [16]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    17. [17]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    18. [18]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    19. [19]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    20. [20]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

Metrics
  • PDF Downloads(76)
  • Abstract views(2851)
  • HTML views(668)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return