Citation: Zuo Fangtao, Xu Wei, Zhao Aiwu. A SERS Approach for Rapid Detection of Hg2+ Based on Functionalized Fe3O4@Ag Nanoparticles[J]. Acta Chimica Sinica, ;2019, 77(4): 379-386. doi: 10.6023/A18110475 shu

A SERS Approach for Rapid Detection of Hg2+ Based on Functionalized Fe3O4@Ag Nanoparticles

  • Corresponding author: Zhao Aiwu, awzhao@iim.ac.cn
  • Received Date: 26 November 2018
    Available Online: 14 April 2019

    Fund Project: the National Natural Science Foundation of China 61875255Project supported by the National Natural Science Foundation of China (No. 61875255) and the Direction Program of Hefei Center of Physical Science and Technology (No. 2018ZYFX005)the Direction Program of Hefei Center of Physical Science and Technology 2018ZYFX005

Figures(12)

  • Mercury is an important pollutant, which has attracted wide attention in recent years. Up to now, based on surface enhanced raman spectroscopy (SERS) strategy for detection of Hg2+ is very attractive due to its high sensitivity among various detection methods. Based on the "turn-off" mechanism, we synthesized a magnetic Fe3O4@Ag nanomaterial for SERS detection of Hg2+. The magnetic-plasma resonance nanoparticles, which combine magnetic and plasma resonance properties, can be used for SERS detection of mercury ions with high sensitivity and selectivity. Firstly, the magnetic nanoparticles were prepared by solvothermal reaction, and silver nanoparticles were coated on the surface of magnetic nanoparticles after modification of amino groups. By modifying the positively charged PDADMAC, polyDADMAC (PDDA) layer, the negatively charged methyl orange probe molecule is adsorbed on the surface of Fe3O4@Ag, and in the presence of Hg2+, a significant decrease in SERS signal can be observed. Due to the short-time reaction of Hg2+ and Ag nanoparticles, an amalgam is formed on the surface of the Ag particles, which affects the surface plasmon resonance (SPR) characteristics of the Ag nanoparticles, resulting in enhanced attenuation of the electromagnetic field. And the short-time reaction of Hg2+ and Ag nanoparticles also leads to a decrease in the surface zeta potential of the Ag nanoparticles and affects the adsorption of the Raman probe molecules on the surface, resulting in a decrease in the SERS signal. Therefore, the decrease of SERS intensity in the presence of Hg2+ is mainly attributed to the interaction between Hg2+ and Ag nanoparticles. Through our experiments, it can be proved that the detection limit of the method based on "turn-off" mechanism for detecting Hg2+ ions can be as low as 10-10 mol/L. In addition, this method also shows high selectivity for divalent mercury ions. The SERS nanosensor designed in this experiment can be used to detect the specificity and ultra-sensitivity of Hg2+ in the environment, and it also provides great potential for the construction of SERS nanosensor for heavy metal ions.
  • 加载中
    1. [1]

      Cai, F. D.; Zhu, Q.; Zhao, K.; Deng, A. P.; Li, J. G. Environ. Sci. Technol. 2015, 49, 5013.  doi: 10.1021/acs.est.5b00690

    2. [2]

      Zhang, C. Y.; Meng, Y. Z.; Kuang, J. Z.; Xu, L. Acta Chim. Sinica 2015, 73, 409.
       

    3. [3]

      Wang, X. W.; Chen, S. Acta Chim. Sinica 2014, 72, 1147.
       

    4. [4]

      Wan, J.; Yin, G.; Ma, X. J.; Xing, L.; Luo, X. L. Electroanalysis 2014, 26, 823.  doi: 10.1002/elan.201300628

    5. [5]

      Taylor, V. F.; Bugge, D.; Jackson, B. P.; Chen, C. Y. Environ. Sci. Technol. 2014, 48, 5058.  doi: 10.1021/es404159k

    6. [6]

      Srivastava, R. K.; Sedman, C. B.; Kilgroe, J. D.; Smith, D.; Renninger, S. J. Air Waste Manage. Assoc. 2001, 51, 1460.  doi: 10.1080/10473289.2001.10464367

    7. [7]

      Lee, C.; Choo, J. Bull. Korean Chem. Soc. 2011, 32, 2003.  doi: 10.5012/bkcs.2011.32.6.2003

    8. [8]

      Wu, Y. G.; Zhan, S. S.; Xu, L. R.; Shi, W. W.; Xi, T.; Zhan, X. J.; Zhou, P. Chem. Commun. 2011, 47, 6029.

    9. [9]

      Shah, A. Q.; Kazi, T. G.; Baig, J. A.; Afridi, H. I.; Arain, M. B. Food Chem. 2012, 134, 2345.  doi: 10.1016/j.foodchem.2012.03.109

    10. [10]

      Ye, B. C.; Yin, B. C. Angew. Chem., Int. Ed. 2008, 47, 8386.  doi: 10.1002/anie.v47:44

    11. [11]

      Lou, T. T.; Chen, L.; Zhang, C. R.; Kang, Q.; You, H. Y.; Shen, D. Z.; Chen, L. X. Anal. Methods 2012, 4, 488.  doi: 10.1039/c2ay05764f

    12. [12]

      Wu, X. F.; Ma, Q. J.; Wei, X. J.; Hou, Y. M.; Zhu, X. Sens. Actuators, B 2013, 183, 565.  doi: 10.1016/j.snb.2013.04.024

    13. [13]

      Rakkesh, R. A.; Durgalakshmi, D.; Balakumar, S. RSC Adv. 2016, 6, 34342.  doi: 10.1039/C6RA01784C

    14. [14]

      Qu, H.; Lai, Y.; Niu, D.; Sun, S. Anal. Chim. Acta 2013, 763, 38.  doi: 10.1016/j.aca.2012.12.016

    15. [15]

      Du, Y. X.; Liu, R. Y.; Liu, B. H.; Wang, S. H.; Han, M. Y.; Zhang, Z. P. Anal. Chem. 2013, 85, 3160.  doi: 10.1021/ac303358w

    16. [16]

      Li, D.-W.; Zhai, W.-L.; Li, Y.-T.; Long, Y.-T. Microchim. Acta 2014, 181, 23.  doi: 10.1007/s00604-013-1115-3

    17. [17]

      Alvarez-Puebla, R. A.; Liz-Marzan, L. M. Angew. Chem., Int. Ed. 2012, 51, 11214.  doi: 10.1002/anie.201204438

    18. [18]

      Kang, T.; Yoo, S. M.; Yoon, I.; Lee, S.; Choo, J.; Lee, S. Y.; Kim, B. Chem.-Eur. J. 2011, 17, 2211.  doi: 10.1002/chem.201001663

    19. [19]

      Duan, J. L.; Yang, M.; Lai, Y. C.; Yuan, J. P.; Zhan, J. H. Anal. Chim. Acta 2012, 723, 88.  doi: 10.1016/j.aca.2012.02.031

    20. [20]

      Li, F.; Wang, J.; Lai, Y. M.; Wu, C.; Sun, S. Q.; He, Y. H.; Ma, H. Biosens. Bioelectron. 2013, 39, 82.  doi: 10.1016/j.bios.2012.06.050

    21. [21]

      Kang, Y.; Wu, T.; Liu, B. X.; Wang, X.; Du, Y. P. Microchim. Acta 2014, 181, 1333.  doi: 10.1007/s00604-014-1259-9

    22. [22]

      Ojea-Jimenez, I.; Lopez, X.; Arbiol, J.; Puntes, V. ACS Nano 2012, 6, 2253.  doi: 10.1021/nn204313a

    23. [23]

      Ding, X.; Kong, L.; Wang, J.; Fang, F.; Li, D.; Liu, J. ACS Appl. Mater. Interfaces 2013, 5, 7072.  doi: 10.1021/am401373e

    24. [24]

      Zhang, L.; Chang, H. X.; Hirata, A.; Wu, H. K.; Xue, Q. K.; Chen, M. W. ACS Nano. 2013, 7, 4595.  doi: 10.1021/nn4013737

    25. [25]

      Chung, E.; Gao, R.; Ko, J.; Choi, N.; Lim, D. W.; Lee, E. K.; Chang, S.-I.; Choo, J. Lab. Chip. 2013, 13, 260.  doi: 10.1039/C2LC41079F

    26. [26]

      Esmaielzadeh Kandjani, A.; Sabri, Y. M.; Mohammad-Taheri, M.; Bansal, V.; Bhargava, S. K. Environ. Sci. Technol. 2015, 49, 1578.  doi: 10.1021/es503527e

    27. [27]

      Sun, B.; Jiang, X. X.; Wang, H. Y.; Song, B.; Zhu, Y.; Wang, H.; Su, Y. Y.; He, Y. Anal. Chem. 2015, 87, 1250.  doi: 10.1021/ac503939d

    28. [28]

      Deng, H.; Li, X. L.; Peng, Q.; Wang, X.; Chen, J. P.; Li, Y. D. Angew. Chem., Int. Ed. 2005, 44, 2782.  doi: 10.1002/(ISSN)1521-3773

    29. [29]

      Zhao, Y. L.; Tao, C. R.; Xiao, G.; Wei, G. P.; Li, L. H.; Liu, C. X.; Su, H. J. Nanoscale 2016, 8, 5313.  doi: 10.1039/C5NR08624H

    30. [30]

      Li, Z. X.; Zhao, A. W.; Gao, Q.; Guo, H. Y.; Wang, D. P.; Li, L. Acta Chim. Sinica 2015, 73, 847.
       

    31. [31]

      Ren, W.; Zhu, C. Z.; Wang, E. Nanoscale 2012, 4, 5902.  doi: 10.1039/c2nr31410j

    32. [32]

      Alvarez-Puebla, R. A.; Arceo, E.; Goulet, P. J. G.; Garrido, J. J.; Aroca, R. F. J. Phys. Chem. B 2005, 109, 3787.  doi: 10.1021/jp045015o

    33. [33]

      He, S. T.; Yao, J. N.; Jiang, P.; Shi, D. X.; Zhang, H. X.; Xie, S. S.; Pang, S. J.; Gao, H. J. Langmuir 2001, 17, 1571.  doi: 10.1021/la001239w

    34. [34]

      Katsikas, L.; Gutierrez, M.; Henglein, A. J. Phys. Chem. 1996, 100, 11203.  doi: 10.1021/jp960357i

    35. [35]

      Ding, S.-Y.; Wu, D.-Y.; Yang, Z.-L.; Ren, B.; Xu, X.; Tian, Z.-Q. Chem. J. Chin. Univ. Chin. 2008, 29, 2569.  doi: 10.3321/j.issn:0251-0790.2008.12.048

    36. [36]

      Zhao, L. B.; Huang, Y. F.; Wu, D. Y.; Ren, B. Acta Chim. Sinica 2014, 72, 1125.
       

    37. [37]

      Mclellan, J. M.; Xiong, Y. J.; Hu, M.; Xia, Y. N. Chem. Phys. Lett. 2006, 417, 230.  doi: 10.1016/j.cplett.2005.10.028

    38. [38]

      Wang, G. Q.; Lim, C.; Chen, L. X.; Chon, H.; Choo, J.; Hong, J.; Demello, A. J. Anal. Bioanal. Chem. 2009, 394, 1827.  doi: 10.1007/s00216-009-2832-7

    39. [39]

      Ganbold, E.-O.; Park, J.-H.; Ock, K.-S.; Joo, S.-W. Bull. Korean Chem. Soc. 2011, 32, 519.  doi: 10.5012/bkcs.2011.32.2.519

    40. [40]

      Sun, Z. L.; Du, J. J.; Lv, B.; Jing, C. Y. RSC Adv. 2016, 6, 73040.  doi: 10.1039/C6RA15044F

    41. [41]

      Hou, M. J.; Huang, Y.; Ma, L. W.; Zhang, Z. J. Nanoscale Res. Lett. 2015, 10, 437.  doi: 10.1186/s11671-015-1142-6

    42. [42]

      Mou, Y.; Lu, H.; Li, M.; Chen, C. Chin. J. Chem. 2017, 35, 435.  doi: 10.1002/cjoc.v35.4

  • 加载中
    1. [1]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    2. [2]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    3. [3]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    4. [4]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    5. [5]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    6. [6]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    7. [7]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    8. [8]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    9. [9]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    10. [10]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    11. [11]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    12. [12]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    13. [13]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    14. [14]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    15. [15]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    16. [16]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    17. [17]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    18. [18]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    19. [19]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    20. [20]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

Metrics
  • PDF Downloads(15)
  • Abstract views(1640)
  • HTML views(289)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return