Citation: Fu Fangzhou, Zhang Zhicheng, Sun Qianyi, Xu Bing, Sha Jingjie. Label-free Detection of PD-1 Antibody and Antigen Immunoreaction Using Nano-Sensors[J]. Acta Chimica Sinica, ;2019, 77(3): 287-292. doi: 10.6023/A18110472 shu

Label-free Detection of PD-1 Antibody and Antigen Immunoreaction Using Nano-Sensors

  • Corresponding author: Sha Jingjie, major212@seu.edu.cn
  • Received Date: 22 November 2018
    Available Online: 18 March 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 51675101, 51435003, 51375092) and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX18_0019)the National Natural Science Foundation of China 51375092the National Natural Science Foundation of China 51435003the Postgraduate Research & Practice Innovation Program of Jiangsu Province SJCX18_0019the National Natural Science Foundation of China 51675101

Figures(5)

  • Immunotherapy for cancer is a method to treat cancer by using the body's own immune system. Programmed death receptor 1 (PD-1) is one of the checkpoints in the immunotherapy. The signal pathway PD-1 (programmed death receptor 1)/PD-L1 (ligand of PD-1) is closely related to the immune escape of the cancer cells. The inhibitor drugs for PD-1 checkpoint, essentially the monoclonal antibodies of PD-1 or PD-L1 which is essentially the immune checkpoints inhibitors could block the PD-1/PD-L1 pathway and reactivate T-cells to kill cancer cells, and as a result, the immunotherapy for cancer is realized. In order to study the binding process of PD-1 drugs and PD-1 antigen in vivo, in this work, solid-state nanopore as a single molecule method is used to detect the binding of PD-1 antibody and antigen. The PD-1 antibody as well as antigen is driven though the same nanopore under the same experimental condition by the external electric field. Since the antibody's block is about 0.01297 while the antigen's block is 0.00404, the PD-1 antibody is distinguished with the PD-1 antigen according to the theoretical formula. Driving the PD-1 antigen though the nanopore modified by PD-1 antibody (a series of experiments are conducted for characterization) under the same temperature and buffer concentration, the antibody-antigen complexes are detected and distinguished with PD-1 protein and its antibody through the relative current drop analysis and the current drop achieved before. The results suggest that the antibody and antigen have a specific binding (the smaller peak represents the free PD-1 antibody and antigen) and the binding process can be detected by nano-sensors. So the nanopore is able to distinguish the antibody, the antigen and the complexes without any labling. And in the future, the nanopore technology may be a rapid and label-free way for patients and doctors to evaluate the drugs' efficiency.
  • 加载中
    1. [1]

      Chen, M. J.; Novaes, P. E.; Gadia, R. Rev. Assoc. Med. Bras. 2017, 63, 729.  doi: 10.1590/1806-9282.63.09.729

    2. [2]

      Meyer, L. A.; Cronin, A. M.; Sun, C. C. J. Clin. Oncol. 2016, 34.

    3. [3]

      Salto, S.; Shimozuma, K.; Ohashi, Y. Value Health 2007, 10, A340.

    4. [4]

      Riaz, S. P.; Lüchtenborg, M.; Jack, R. H. Eur. J. Cancer 2012, 48, 54.

    5. [5]

      Matsuzawa, F.; Ohki, S. Y.; Aikawa, S. I. Sci. Adv. Mater. 2005, 6, 463.  doi: 10.1016/j.stam.2005.04.007

    6. [6]

      Saleh, O. A.; Sohn, L. L. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 820.  doi: 10.1073/pnas.0337563100

    7. [7]

      Schibel, A. E. P.; Ervin, E. N. Langmuir 2014, 30, 11248.  doi: 10.1021/la502714b

    8. [8]

      Wang, S.; Haque, F.; Rychahou, P. G. ACS Nano 2013, 7, 9814.  doi: 10.1021/nn404435v

    9. [9]

      Stephen, W. H.; Eric, M.; Iftekhar, A. BMC Bioinformatics 2007, 8, S20.

    10. [10]

      Wu, H. J.; Li, Y.; Fan, J. Anal. Chem. 2014, 86, 1988.  doi: 10.1021/ac4027669

    11. [11]

      Brower, V. JNCI, J. Natl. Cancer Inst. 2015, 107, djv069.  doi: 10.1093/jnci/djv069

    12. [12]

      Li, Q.; Quan, L.; Lyu, J. Oncotarget 2016, 7, 64967.

    13. [13]

      Miller, K. D.; Siegel, R. L.; Lin, C. C. CA-Cancer J. Clin. 2016, 66, 271.  doi: 10.3322/caac.v66.4

    14. [14]

      Muqbil, I.; Azmi, A. S.; Mohammad, R. M. Cancers 2018, 10, 138.  doi: 10.3390/cancers10050138

    15. [15]

      Barbee, M. S.; Ogunniyi, A.; Horvat, T. Z. Ann. Pharmacother. 2015, 49, 907.  doi: 10.1177/1060028015586218

    16. [16]

      Cao, C.; Liao, D.-F.; Ying, Y.-L.; Long, Y.-T. Acta Chim. Sinica 2016, 74, 734.
       

    17. [17]

      Sha, J. J.; Xu, B.; Chen, Y. F.; Yang, Y. J. Acta Chim. Sinica 2017, 75, 11.
       

    18. [18]

      Liao, D. F.; Cao, C.; Ying, Y. L. Small 2018, 14, 1704520.  doi: 10.1002/smll.v14.18

    19. [19]

      Kasianowicz, J. J.; Bezrukov, S. M. Nat. Biotechnol. 2016, 34, 481.  doi: 10.1038/nbt.3570

    20. [20]

      Feng, Y.; Zhang, Y.; Ying, C. Genom. Proteom. Bioinf. 2015, 13, 4.  doi: 10.1016/j.gpb.2015.01.009

    21. [21]

      Howorka, S.; Cheley, S.; Bayley, H. Nat. Biotechnol. 2001, 19, 636.  doi: 10.1038/90236

    22. [22]

      Wanunu, M. Phys. Life Rev. 2012, 9, 125.  doi: 10.1016/j.plrev.2012.05.010

    23. [23]

      Liu, N. N.; Yang, Z. K.; Ou, X. W. Mikrochim. Acta 2016, 183, 955.  doi: 10.1007/s00604-015-1560-2

    24. [24]

      Venkatesan, B. M.; Bashir, R. Nat. Nanotechnol. 2011, 6, 615.  doi: 10.1038/nnano.2011.129

    25. [25]

      Ying, Y.-L.; Zhang, X.; Liu, Y.; Xue, M.-Z.; Li, H.-L.; Long, Y.-T. Acta Chim. Sinica 2013, 71, 44.
       

    26. [26]

      Nguyen, B. H.; Nguyen, V. H. Adv. Nat. Sci.-Nanosci. 2016, 7, 023002.  doi: 10.1088/2043-6262/7/2/023002

    27. [27]

      Stoloff, D. H.; Wanunu, M. Curr. Opin. Biotechnol. 2013, 24, 699.  doi: 10.1016/j.copbio.2012.11.008

    28. [28]

      Han, A.; Creus, M.; Schürmann, G. Anal. Chem. 2008, 80, 4651.  doi: 10.1021/ac7025207

    29. [29]

      Freedman, K. J.; Bastian, A. R.; Chaiken, I.; Kim, M. J. Small 2013, 9, 750.  doi: 10.1002/smll.v9.5

    30. [30]

      Kwak, D.; Chae, H.; Lee, M. Angew. Chem., Int. Ed. 2016, 128, 5807.  doi: 10.1002/ange.201511601

    31. [31]

      Ying, Y. L.; Yu, R. J.; Hu, Y. X. Chem. Commun. 2017, 53, 8620.  doi: 10.1039/C7CC03927A

    32. [32]

      Wang, H. F.; Huang, F.; Gu, Z. Chin. J. Anal. Chem. 2018, 46, 50.

    33. [33]

       

    34. [34]

      Li, Q.; Lin, Y.; Ying, Y. L.; Liu, S. C.; Long, Y. T. Sci. Sin.:Chim. 2017, 47, 1445.

    35. [35]

      Deblois, R. W.; Bean, C. P. Rev. Sci. Instrum. 1970, 41, 909.  doi: 10.1063/1.1684724

    36. [36]

      Han, A. P.; Schurmann, G.; Mondin, G.; Bitterli, R. A.; Hegelbach, N. G.; de Rooij, N. F.; Staufer, U. Appl. Phys. Lett. 2006, 88, 350.

    37. [37]

      Larkin, J.; Henley, R. Y.; Muthukumar, M.; Rosenstein, J. K.; Wanunu, M. Biophys. J. 2014, 106, 696.  doi: 10.1016/j.bpj.2013.12.025

    38. [38]

      Kowalczyk, S. W.; Grosberg, A. Y.; Rabin, Y. Nanotechnology 2011, 22, 315101.  doi: 10.1088/0957-4484/22/31/315101

    39. [39]

      Dekker, C. Nat. Nanotechnol. 2007, 2, 209.  doi: 10.1038/nnano.2007.27

    40. [40]

      Gierak, J.; Madouri, A.; Biance, A. L. Microelectron. Eng. 2007, 84, 779.  doi: 10.1016/j.mee.2007.01.059

    41. [41]

      Ma, J.; Qiu, Y.; Yuan, Z. Phys. Rev. E 2015, 92, 022719.  doi: 10.1103/PhysRevE.92.022719

  • 加载中
    1. [1]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    2. [2]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    3. [3]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    4. [4]

      An LuYuhao GuoYi YanLin ZhaiXiangyu WangWeiran CaoZijie LiZhixia ZhaoYujie ShiYuanjun ZhuXiaoyan LiuHuining HeZhiyu WangJian-Cheng Wang . Nanomedicine integrating the lipidic derivative of 5-fluorouracil, miriplatin and PD-L1 siRNA for enhancing tumor therapy. Chinese Chemical Letters, 2024, 35(6): 108928-. doi: 10.1016/j.cclet.2023.108928

    5. [5]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    6. [6]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    7. [7]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    8. [8]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    9. [9]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    10. [10]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    11. [11]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    12. [12]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    13. [13]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    14. [14]

      Wujun JianMong-Feng ChiouYajun LiHongli BaoSong Yang . Cu-catalyzed regioselective diborylation of 1,3-enynes for the efficient synthesis of 1,4-diborylated allenes. Chinese Chemical Letters, 2024, 35(5): 108980-. doi: 10.1016/j.cclet.2023.108980

    15. [15]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    16. [16]

      Hai-Yang SongJun JiangYu-Hang SongMin-Hang ZhouChao WuXiang ChenWei-Min He . Supporting-electrolyte-free electrochemical [2 + 2 + 1] annulation of benzo[d]isothiazole 1,1-dioxides, N-arylglycines and paraformaldehyde. Chinese Chemical Letters, 2024, 35(6): 109246-. doi: 10.1016/j.cclet.2023.109246

    17. [17]

      Zhiwei ChenHeyun ShengXue LiMenghan ChenXin LiQiuling Song . Efficient capture of difluorocarbene by pyridinium 1,4-zwitterionic thiolates: A concise synthesis of difluoromethylene-containing 1,4-thiazine derivatives. Chinese Chemical Letters, 2024, 35(4): 108937-. doi: 10.1016/j.cclet.2023.108937

    18. [18]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    19. [19]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    20. [20]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

Metrics
  • PDF Downloads(13)
  • Abstract views(1317)
  • HTML views(257)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return