Citation: Cai Qian, Ma Haowen. Recent Advances of Chiral Hypervalent Iodine Reagents[J]. Acta Chimica Sinica, ;2019, 77(3): 213-230. doi: 10.6023/A18110470 shu

Recent Advances of Chiral Hypervalent Iodine Reagents

  • Corresponding author: Cai Qian, caiqian@jnu.edu.cn
  • Received Date: 21 November 2018
    Available Online: 28 March 2019

    Fund Project: the National Natural Science Foundation of China 21772066Guangdong Special Support Program 2017TX04R059Project supported by the National Natural Science Foundation of China (Nos. 21772066, 21572229) and Guangdong Special Support Program (No. 2017TX04R059)the National Natural Science Foundation of China 21572229

Figures(39)

  • Hypervalent iodine chemistry has arose as an important field in organic chemistry in the past decades. Hypervalent iodine compounds, with reactivities similarly to transition metals in many different types of transformations, have attracted broad interests in organic community due to their practical advantages in the mild conditions, low costs, environmental benign and low toxicity. Great progresses have been made in this field. Chiral hypervalent iodine reagents or precursors have also been developed and utilized in a variety of asymmetric reactions in a stoichiometric or catalytic way. Important advances have been witnessed in the field of chiral hypervalent iodine chemistry in recent years. However, great limitations still exist. In this review, we have made a summary of different types of chiral hypervalent iodine reagents and precursors according to the characteristics of these compounds and the timeline. It may be helpful for the researchers to better understand the development and limitations of chiral hypervalent iodine chemistry.
  • 加载中
    1. [1]

      For books, see: (a) Chemistry of Hypervalent Compounds, Ed.: AKiba, K. Y., Wiley-VCH, New York, 1999. (b) Zhdankin, V. V. Hypervalent Iodine Chemistry: Preparation, Structure and Syn-thetic Application of Polyvalent Iodine Compounds, John Wiley & Sons Ltd., New York, 2014. (c) Iodine Chemistry And Applications, Ed.: Kaiho, T., John Wiley & Sons Ltd., New York, 2015. (d) Hypervalent Iodine Chemistry: Modern Developments in Organic Synthesis, Ed.: Wirth, T., Springer, 2003.

    2. [2]

      For recent reviews, see: (a) Yoshimura, A.; Zhdankin, V. V. Chem. Rev. 2016, 116, 3328. (b) Duan, Y.; Jiang, S.; Han, Y.; Sun, B.; Zhang, C. Chin. j. Org. Chem. 2016, 36, 1973(in Chinese). (段亚南, 姜山, 韩永超, 孙博, 张弛, 有机化学, 2016, 36, 1973. ) (c) Ma, J.; Chen, L.; Yuan, Z.; Cheng, H. Chin. j. Org. Chem. 2018, 38, 1586(in Chinese). (马姣丽, 陈立成, 袁中文, 程辉成, 有机化学, 2018, 38, 1586. )

    3. [3]

      For selected recent reviews, see: (a) Flores, A.; Cots, E.; Bergès, J.; Muñiz, K. Adv. Synth. Catal. 2019, 361, DOI: 10.1002/adsc. 201800521. (b)MartínRomero,R.; Wöste,T. H.; Muñiz,K. Chem. AsianJ. 2014,9,972. (c)Singh,F. V.; Wirth,T. Chem. AsianJ. 2014,9,950. (d)Harned,A. M. TetrahedronLett. 2014,55,4681. (e)Parra,A.; Reboredo, S. Chem. Eur. J. 2013,19,17244.

    4. [4]

      Liang, H.; Ciufolini, M. A. Angew. Chem. Int. Ed. 2011, 50, 11849.  doi: 10.1002/anie.v50.50

    5. [5]

      Ochiai, M.; Takeuchi, Y.; Katayama, T.; Sueda, T.; Miyamoto, K. j. Am. Chem. Soc. 2005, 127, 12244. (b) Dohi, T.; Maruyama, A.; Yoshimura, M.; Morimoto, K.; Tohma, H.; Kita, Y. Angew. Chem. Int. Ed. 2005, 44, 6193.

    6. [6]

      Pribram, R. Justus Liebigs Ann. Chem. 1907, 351, 481.  doi: 10.1002/(ISSN)1099-0690

    7. [7]

      Imamoto, T.; Koto, H. Chem. Lett. 1986, 967.

    8. [8]

      Hatzigrigoriou, E.; Varvoglis, A.; Bakola-Christianopoulou, M. j. Org. Chem. 1990, 55, 315.  doi: 10.1021/jo00288a053

    9. [9]

      Xia, M.; Chen, Z.-C. Synth. Commun. 1997, 27, 1321.  doi: 10.1080/00397919708006060

    10. [10]

      Ray Ⅲ, D. G.; Koser, G. F. j. Am. Chem. Soc. 1990, 112, 5672.  doi: 10.1021/ja00170a059

    11. [11]

      Ray Ⅲ D. G.; Koser, G. F. j. Org. Chem. 1992, 57, 1607.  doi: 10.1021/jo00031a054

    12. [12]

      Tohma, H.; Takizawa, S.; Watanabe, H.; Fukuoka, Y.; Maegawa, T.; Kita, Y. j. Org. Chem. 1999, 64, 3519.  doi: 10.1021/jo982295t

    13. [13]

      Rabah, G. A.; Koser, G. F. Tetrahedron Lett. 1996, 37, 6453.  doi: 10.1016/0040-4039(96)01436-0

    14. [14]

      (a) Wirth, T.; Hirt, U. H. Tetrahedron Asymmetry 1997, 8, 23. (b) Hirt, U. H.; Spingler, B.; Wirth, T. j. Org. Chem. 1998, 63, 7674. (c) Hirt, U. H.; Schuster, M. F. H.; French, A. N.; Wiest, O. G.; Wirth, T. Eur. j. Org. Chem. 2001, 1569.

    15. [15]

      Mizar, P.; Laverny, A.; EI-Sherbini, M.; Farid, U.; Brown, M.; Malmedy, F.; Wirth, T. Chem. Eur. j. 2014, 20, 9910.  doi: 10.1002/chem.201403891

    16. [16]

      Hempel, C.; Maichle-Mössmer, C.; Pericàs, M. A.; Nachtsheim, B. j. Adv. Synth. Catal. 2017, 359, 2941.

    17. [17]

      Fujita, M.; Okuno, S.; Lee, H. J.; Sugimura, T.; Okuyama, T. Tetrahedron Lett. 2007, 48, 8691.  doi: 10.1016/j.tetlet.2007.10.015

    18. [18]

      (a) Uyanik, M.; Yasui, T.; Ishihara, K. Angew. Chem. Int. Ed. 2010, 49, 2175. (b) Uyanik, M.; Yasui, T.; Ishihara, K. Tetrahedron 2010, 66, 5841.

    19. [19]

      (a) Fujita, M.; Yoshida, Y.; Miyata, K.; Wakisaka, A.; Sugimura, T. Angew. Chem. Int. Ed. 2010, 49, 7068. (b) Fujita, M.; Mori, K.; Shimogaki, M.; Sugimura, T. Org. Lett. 2012, 14, 1294. (c) Shimogaki, M.; Fujita, M.; Sugimura, T. Eur. j. Org. Chem. 2013, 7128. (d) Takesue, T.; Fujita, M.; Sugimura, T.; Akutsu, H. Org. Lett. 2014, 16, 4634.

    20. [20]

      Fujita, M.; Wakita, M.; Sugimura, T. Chem. Commun. 2011, 47, 3983.  doi: 10.1039/c1cc10129c

    21. [21]

      (a) Shimogaki, M.; Fujita, M.; Sugimura, T. Angew. Chem. Int. Ed. 2016, 55, 15797. (b) Shimogaki, M.; Fujita, M.; Sugimura, T. j. Org. Chem. 2017, 82, 11836.

    22. [22]

      Röben, C.; Souto, j. A.; González, Y.; Lishchynskyi, A.; Muñiz, K. Angew. Chem. Int. Ed. 2011, 50, 9478.  doi: 10.1002/anie.v50.40

    23. [23]

      Muñiz, K.; Barreiro, L.; Romero, R. M.; Martínez, C. j. Am. Chem. Soc. 2017, 139, 4354.  doi: 10.1021/jacs.7b01443

    24. [24]

      (a) Haubenreisser, S.; Wöste, T. H.; Martínez, C.; Ishihara, K.; Muñiz, K. Angew. Chem. Int. Ed. 2016, 55, 413. (b) Wöste, T. H.; Muñiz, K. Synthesis 2016, 48, 816.

    25. [25]

      (a) Farid, U.; Wirth, T. Angew. Chem. Int. Ed. 2012, 51, 3462. (b) Mizar, P.; Niebuhr, R.; Hutchings, M.; Farooq, U.; Wirth, T. Chem. Eur. J. 2016, 22, 1614.

    26. [26]

      Gelis, C.; Dumoulin, A.; Bekkaye, M.; Neuville, L.; Masson, G. Org. Lett. 2017, 19, 278.  doi: 10.1021/acs.orglett.6b03631

    27. [27]

      (a) Kong, W.; Feige, P.; de Haro, T.; Nevado, C. Angew. Chem. Int. Ed. 2013, 52, 2469. (b) Pluta, R.; Krach, P. E.; Cavallo, L.; Falivene, L.; Rueping, M. ACS Catal. 2018, 8, 2582.

    28. [28]

      Wu, H.; He, Y.-P.; Xu, L.; Zhang, D.-Y.; Gong, L.-Z. Angew. Chem. Int. Ed. 2014, 53, 3466.  doi: 10.1002/anie.201309967

    29. [29]

      Zhang, D.-Y.; Xu, L.; Wu, H.; Gong, L.-Z. Chem. Eur. j. 2015, 21, 10314.  doi: 10.1002/chem.201501583

    30. [30]

      Cao, Y.; Zhang, X.; Lin, G.; Zhang-Negrerie, D.; Du, Y. Org. Lett. 2016, 18, 5580.  doi: 10.1021/acs.orglett.6b02816

    31. [31]

      Farid, U.; Malmedy, F.; Claveau, R.; Albers, C.; Wirth, T. Angew. Chem. Int. Ed. 2013, 52, 7018.  doi: 10.1002/anie.201302358

    32. [32]

      Brown, M.; Kumar, R.; Rehbein, J.; Wirth, T. Chem. Eur. j. 2016, 22, 4030.  doi: 10.1002/chem.201504844

    33. [33]

      Banik, S. M.; Medley, j. W.; Jacobsen, E. N. j. Am. Chem. Soc. 2016, 138, 5000.  doi: 10.1021/jacs.6b02391

    34. [34]

      Banik, S. M.; Medley, j. W.; Jacobsen, E. N. Science 2016, 353, 51.  doi: 10.1126/science.aaf8078

    35. [35]

      Zhou, B.; Haj, M. K.; Jacobsen, E. N.; Houk, K. N.; Xue, X.-S. j. Am. Chem. Soc. 2018, 140, 15206.  doi: 10.1021/jacs.8b05935

    36. [36]

      Mennie, K. M.; Banik, S. M.; Reichert, E. C.; Jacobsen, E. N. j. Am. Chem. Soc. 2018, 140, 4797.  doi: 10.1021/jacs.8b02143

    37. [37]

      Qurban, J.; Elsherbini, M.; Wirth, T. j. Org. Chem. 2017, 82, 11872.  doi: 10.1021/acs.joc.7b01571

    38. [38]

      Hashimoto, T.; Shimazaki, Y.; Omatsu, Y.; Maruoka, K. Angew. Chem. Int. Ed. 2018, 57, 7200.  doi: 10.1002/anie.v57.24

    39. [39]

      Zhdandin, V. V.; Smart, j. T.; Zhao, P.; Kiprof, P. Tetrahedron Lett. 2000, 41, 5299.  doi: 10.1016/S0040-4039(00)00836-4

    40. [40]

      Ladziata, U.; Carlson, J.; Zhdankin, V. V. Tetrahedron Lett. 2006, 47, 6301.  doi: 10.1016/j.tetlet.2006.06.103

    41. [41]

      Altermann, S. M.; Richardson, R. D.; Page, T. K.; Schmidt, R. K.; Holland, E.; Mohammed, U.; Paradine, S. M.; French, A. N.; Richter, C.; Bahar, A. M.; Witulski, B.; Wirth, T. Eur. j. Org. Chem. 2008, 5315.

    42. [42]

      Farooq, U.; Schäfer, S.; Ali Shah, A.-U.-H.; Freudendahl, D. M.; Wirth, T. Synthesis 2010, 1023.

    43. [43]

      Volp, K. A.; Harned, A. M. Chem. Commun. 2013, 49, 3001.  doi: 10.1039/c3cc00013c

    44. [44]

      Boppisetti, j. K.; Birman, V. B. Org. Lett. 2009, 6, 1221.

    45. [45]

      Guilbault, A.-A.; Basdevant, B.; Wanie, V.; Legault, C. Y. j. Org. Chem. 2012, 77, 11283.  doi: 10.1021/jo302393u

    46. [46]

      Rodríguez, A.; Moran, W. j. Synthesis 2012, 44, 1178.  doi: 10.1055/s-0031-1290590

    47. [47]

      Uyanik, M.; Yasui, T.; Ishihara, K. Angew. Chem. Int. Ed. 2013, 52, 9215.  doi: 10.1002/anie.201303559

    48. [48]

      Uyanik, M.; Sasakura, N.; Mizuno, M.; Ishihara, K. ACS Catal. 2017, 7, 872.  doi: 10.1021/acscatal.6b03380

    49. [49]

      Uyanik, M.; Yasui, Y.; Ishihara, K. j. Org. Chem. 2017, 82, 11946.  doi: 10.1021/acs.joc.7b01941

    50. [50]

      Jain, N.; Xu, S.; Ciufolini, M. A. Chem. Eur. j. 2017, 23, 4542.  doi: 10.1002/chem.201700667

    51. [51]

      Molnár, I. G.; Gilmour, R. j. Am. Chem. Soc. 2016, 138, 5004.  doi: 10.1021/jacs.6b01183

    52. [52]

      Scheidt, F.; Schäfer, M.; Sarie, j. C.; Doniliuc, C. G.; Molloy, j. J.; Gilmour, R. Angew. Chem. Int. Ed. 2018, 57, 16431.  doi: 10.1002/anie.201810328

    53. [53]

      Ochiai, M.; Takaoka, Y.; Masaki, Y. j. Am. Chem. Soc. 1990, 112, 5677.  doi: 10.1021/ja00170a063

    54. [54]

      Ochiai, M.; Kitagawa, Y.; Takayama, N.; Takaoka, Y.; Shiro, M. j. Am. Chem. Soc. 1999, 121, 9234.

    55. [55]

      Deng, Q.-H.; Wang, j.-C.; Xu, Z.-J.; Zhou, C.-Y.; Che, C.-M. Synthesis 2011, 18, 2959.

    56. [56]

      Quideau, S.; Lyvinec, G.; Marguerit, M.; Bathany, K.; Ozanne-Beaudenon, A.; Buffeteau, T.; Cavagnat, D.; Chénedé, A. Angew. Chem. Int. Ed. 2009, 48, 4605.  doi: 10.1002/anie.v48:25

    57. [57]

      Bosset, C.; Coffinier, R.; Peixoto, P. A.; Assal, M. E.; Miqueu, K. M.; Sotiropoulos, j.-M. Pouységu, L.; Quideau, S. Angew. Chem. Int. Ed. 2014, 53, 9860.  doi: 10.1002/anie.201403571

    58. [58]

      Companys, S.; Peixoto, P. A.; Bosset, C.; Chassaing, S.; Miqueu, K.; Sotiropoulos, j.-M.; Pouységu, L.; Quideau, S. Chem. Eur. j. 2017, 23, 13309.  doi: 10.1002/chem.v23.54

    59. [59]

      (a) Brenet, S.; Berthiol, F.; Einhorn, j. Eur. j. Org. Chem. 2013, 8094. (b) Brenet S.; Minozzi, C.; Clarens, B.; Amiri, L.; Berthiol, F. Synthesis 2015, 47, 3859

    60. [60]

      Dohi, T.; Sasa, H.; Miyazaki, K.; Fujitake, M.; Takenaga, N.; Kita, Y. j. Org. Chem. 2017, 82, 11954.  doi: 10.1021/acs.joc.7b02037

    61. [61]

      Levitre, G.; Dumoulin, A.; Retailleau, P.; Panossian, A.; Leroux, F. R.; Masson, G. j. Org. Chem. 2017, 82, 11877.  doi: 10.1021/acs.joc.7b01597

    62. [62]

      Xue, j.-H.; Zhou, Q.-L. Acta Chim. Sinica 2014, 72, 778(in Chinese).
       

    63. [63]

      Dohi, T.; Maruyama, A.; Takenaga, N.; Senami, K.; Minamitsuji, Y.; Fujioka, H.; Caemmerer, S. B.; Kita, Y. Angew. Chem. Int. Ed. 2008, 47, 3787.  doi: 10.1002/(ISSN)1521-3773

    64. [64]

      Dohi, T.; Takenaga, N.; Nakae, T.; Toyoda, Y.; Yamasaki, M.; Shiro, M.; Fujioka, H.; Maruyama, A.; Kita, Y. j. Am. Chem. Soc. 2013, 135, 4558.  doi: 10.1021/ja401074u

    65. [65]

      Yu, J.; Cui, J.; Hou, X.-S.; Liu, S.-S.; Gao, W.-C.; Jiang, S.; Tian, J.; Zhang, C. Tetrahedron: Asymmetry 2011, 22, 2039.  doi: 10.1016/j.tetasy.2011.12.003

    66. [66]

      Ding, Q.; He, H.; Cai, Q. Org. Lett. 2018, 20, 4554.  doi: 10.1021/acs.orglett.8b01849

    67. [67]

      Wang, Y.; Yuan, H.; Lu, H.; Zheng, W.-H. Org. Lett. 2018, 20, 2555.  doi: 10.1021/acs.orglett.8b00711

    68. [68]

      Murray, S. J.; Müller-Bunz, H.; Ibrahim, H. Chem. Commun. 2012, 48, 6268.  doi: 10.1039/c2cc32280c

    69. [69]

      Ogasawara, M.; Sasa, H.; Hu, H.; Amano, Y.; Nakajima, H.; Takenaga, N.; Nakajima, K.; Kita, Y.; Takahashi, T.; Dohi, T. Org. Lett. 2017, 19, 4102.  doi: 10.1021/acs.orglett.7b01876

  • 加载中
    1. [1]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    2. [2]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    3. [3]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    4. [4]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    5. [5]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    6. [6]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    7. [7]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    8. [8]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    9. [9]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    10. [10]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    11. [11]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    12. [12]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    13. [13]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    14. [14]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    15. [15]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    16. [16]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    17. [17]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    18. [18]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    19. [19]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    20. [20]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

Metrics
  • PDF Downloads(59)
  • Abstract views(1850)
  • HTML views(404)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return