Citation: Wei Simin, Wang Yinghui, Zhao Hongmei. Study on the Mechanism of Frustrated Lewis Pairs Catalysed Hydrogenation of 2, 3-Disubstituted 2H-1, 4-Benzoxazine[J]. Acta Chimica Sinica, ;2019, 77(3): 278-286. doi: 10.6023/A18110461 shu

Study on the Mechanism of Frustrated Lewis Pairs Catalysed Hydrogenation of 2, 3-Disubstituted 2H-1, 4-Benzoxazine

  • Corresponding author: Wang Yinghui, wangyinghui@iccas.ac.cn Zhao Hongmei, hmzhao@iccas.ac.cn
  • Received Date: 13 November 2018
    Available Online: 31 March 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21705029, 21701131)the National Natural Science Foundation of China 21701131the National Natural Science Foundation of China 21705029

Figures(7)

  • Due to the different reactivity of hydrogenation reaction by metal-free FLPs catalyst for 2, 3-disubstituted 2H-1, 4-benzoxazine, we explored the reaction mechanism by density functional theory calculations. We have chosen three kinds of substrates with different hydrogenation reactivity as the prototype substrates and toluene as the solvent to calculate the potential energy profile for the FLPs-catalysed hydrogenation reaction at M06-2X/6-311++G(d, p) level with polarized continuum model (PCM) to simulate the solvent effect. From the potential energy profile, we found that when B(C6F5)3 encounters with 2, 3-diphenyl 2H-1, 4-benzoxazine (1o) or 2-methyl-3-phenyl 2H-1, 4-benzoxazine (1p) in toluene, it mainly generates the mixture of Lewis acid-base adducts and Frustrated Lewis Pairs, which has almost similar stability suggesting the transformation of each other by intermolecular rearrangement. However, it reveals big difference when the B(C6F5)3 encounters with 2, 3-dimethyl 2H-1, 4-benzoxazine (1q), where the Lewis acid-base adducts is the preference rather than the mixture of Lewis acid-base adducts and Frustrated Lewis Pairs or Frustrated Lewis Pairs since the lower stability energy. Due to the big energy gap (10.9 kcal/mol) between Lewis acid-base adducts and Frustrated Lewis Pairs, the generated Lewis acid-base adducts could not transform into Frustrated Lewis Pairs in the FLPs-catalysed hydrogenation of 1q at 298 K. That is the main reason why 1q is an inert substrate for the hydrogenation catalysed by FLPs. Natural Bond Orbital, Mulliken charge analysis and the proton affinity energy of N4 site was carried out to assess the electric effect of substituent at C3 on N4 site. It reveals negligible effect of substituent at C3 on N4 charge (basicity) and thus proposes that steric hindrance effect is the major factor affecting the stability energy of Lewis acid-base adducts and Frustrated Lewis Pairs. This is confirmed further by calculative investigation about the substituent effect (-CH2CH3, -CH(CH3)2 and C(CH3)3) on the stability of Lewis acid-base adducts and Frustrated Lewis Pairs in 2-methyl-3-substituted 2H-1, 4-benzoxazine, where with the increased steric hindrance effect, Lewis acid-base adducts tend to have similar stability with Frustrated Lewis Pairs even though less stability. These results clearly illustrate the elusive phenomenon in our previous experiment and may provide new insight for the design of another novel FLPs-catalysed hydrogenation reaction.
  • 加载中
    1. [1]

      Hey, D. A.; Reich, R. M.; Baratta, W.; Kuhn, F. E. Coord. Chem. Rev. 2018, 374, 114.  doi: 10.1016/j.ccr.2018.06.005

    2. [2]

      Lux, S.; Baldauf-Sommerbauer, G.; Siebenhofer, M. ChemSusChem 2018, 11, 3357.  doi: 10.1002/cssc.v11.19

    3. [3]

      Liu, W. P.; Sahoo, B.; Junge, K.; Beller, M. Acc. Chem. Res. 2018, 51, 1858.  doi: 10.1021/acs.accounts.8b00262

    4. [4]

      Ye, R. P.; Lin, L.; Li, Q. H.; Zhou, Z. F.; Wang, T. T.; Russell, C. K.; Adidharma, H.; Xu, Z. H.; Yao, Y. G.; Fan, M. H. Catal. Sci. Technol. 2018, 8, 3428.  doi: 10.1039/C8CY00608C

    5. [5]

      Song, J. J.; Huang, Z. F.; Pan, L.; Li, K.; Zhang, X. W.; Wang, L.; Zou, J. J. Appl. Catal. B-Environ. 2018, 227, 386.  doi: 10.1016/j.apcatb.2018.01.052

    6. [6]

      Rayhan, U.; Kowser, Z.; Islam, M. N.; Redshaw, C.; Yamato, T. Top. Catal. 2018, 61, 560.  doi: 10.1007/s11244-018-0994-2

    7. [7]

      Orlandi, M.; Brenna, D.; Harms, R.; Jost, S.; Benaglia, M. Org. Process Res. Dev. 2018, 22, 430.  doi: 10.1021/acs.oprd.6b00205

    8. [8]

      Filonenko, G. A.; van Putten, R.; Hensen, E. J. M.; Pidko, E. A. Chem. Soc. Rev. 2018, 47, 1459.  doi: 10.1039/C7CS00334J

    9. [9]

      Meemken, F.; Baiker, A. Chem. Rev. 2017, 117, 11522.  doi: 10.1021/acs.chemrev.7b00272

    10. [10]

      Schauermann, S. J. Phys. Chem. Lett. 2018, 9, 5555.  doi: 10.1021/acs.jpclett.8b01782

    11. [11]

      Meemken, F.; Rodriguez-Garcia, L. J. Phys. Chem. Lett. 2018, 9, 996.  doi: 10.1021/acs.jpclett.7b03360

    12. [12]

      Xie, J. H.; Zhou, Q. L. Acta Chim. Sinica 2012, 70, 1427.
       

    13. [13]

      Yamaguchi, R.; Ikeda, C.; Takahashi, Y.; Fujita, K.-i. J. Am. Chem. Soc. 2009, 131, 8410.  doi: 10.1021/ja9022623

    14. [14]

      Monfette, S.; Turner, Z. R.; Semproni, S. P.; Chirik, P. J. J. Am. Chem. Soc. 2012, 134, 4561.  doi: 10.1021/ja300503k

    15. [15]

      Hu, S. B.; Chen, M. W.; Zhai, X. Y.; Zhou, Y. G. Acta Chim. Sinica 2018, 76, 103.
       

    16. [16]

      Zhang, Q.; Liu, A.; Yu, H. Z.; Fu, Y. Acta Chim. Sinica 2018, 76, 113.  doi: 10.3866/PKU.WHXB201707101
       

    17. [17]

      Liu, X.; Han, Z. B.; Wang, Z.; Ding, K. L. Acta Chim. Sinica 2014, 72, 849.
       

    18. [18]

      Jiang, W.; Zhao, Q.; Tang, W. Chin. J. Chem. 2018, 36, 153.  doi: 10.1002/cjoc.201700645

    19. [19]

      Xia, J. Z.; Nie, Y.; Yang, G. Q.; Liu, Y. G.; Gridnev, I. D.; Zhang, W. B. Chin. J. Chem. 2018, 36, 612.  doi: 10.1002/cjoc.v36.7

    20. [20]

      Zhang, Y. W.; Chen, Y. L.; Fang, X. L.; Yuan, Y. Z.; Zhu, H. P. Chin. J. Org. Chem. 2017, 37, 2275.

    21. [21]

      Welch, G. C.; Juan, R. R. S.; Masuda, J. D.; Stephan, D. W. Science 2006, 314, 1124.  doi: 10.1126/science.1134230

    22. [22]

      Stephan, D. W. Acc. Chem. Res. 2015, 48, 306.  doi: 10.1021/ar500375j

    23. [23]

      Liu, Y. B.; Du, H. F. Acta Chim. Sinica 2014, 72, 771.
       

    24. [24]

      Meng, W.; Feng, X. Q.; Du, H. F. Acc. Chem. Res. 2018, 51, 191.  doi: 10.1021/acs.accounts.7b00530

    25. [25]

      Wang, H.; Zheng, Y.; Pan, Z. T.; Fu, H. L.; Ling, F.; Zhong, W. H. Chin. J. Org. Chem. 2017, 37, 301.

    26. [26]

      Mömming, C. M.; Frömel, S.; Kehr, G.; Fröhlich, R.; Grimme, S.; Erker, G. J. Am. Chem. Soc. 2009, 131, 12280.  doi: 10.1021/ja903511s

    27. [27]

      Mahdi, T.; Heiden, Z. M.; Grimme, S.; Stephan, D. W. J. Am. Chem. Soc. 2012, 134, 4088.  doi: 10.1021/ja300228a

    28. [28]

      Zhang, Z.; Du, H. Angew. Chem. Int. Ed. 2015, 54, 623.

    29. [29]

      Liu, Y. B.; Du, H. F. J. Am. Chem. Soc. 2013, 135, 6810.  doi: 10.1021/ja4025808

    30. [30]

      Liu, Y. B.; Du, H. F. J. Am. Chem. Soc. 2013, 135, 12968.  doi: 10.1021/ja406761j

    31. [31]

      Wei, S. M.; Du, H. F. J. Am. Chem. Soc. 2014, 136, 12261.  doi: 10.1021/ja507536n

    32. [32]

      Ren, X. Y.; Du, H. F. J. Am. Chem. Soc. 2016, 138, 810.  doi: 10.1021/jacs.5b13104

    33. [33]

      Fasano, V.; Curless, L. D.; Radcliffe, J. E.; Ingleson, M. J. Angew. Chem.-Int. Ed. 2017, 56, 9202.  doi: 10.1002/anie.201705100

    34. [34]

      Mahdi, T.; Stephan, D. W. J. Am. Chem. Soc. 2014, 136, 15809.  doi: 10.1021/ja508829x

    35. [35]

      Scott, D. J.; Fuchter, M. J.; Ashley, A. E. J. Am. Chem. Soc. 2014, 136, 15813.  doi: 10.1021/ja5088979

    36. [36]

      Brown, K. S.; Djerassi, C. J. Am. Chem. Soc. 1964, 86, 2451.  doi: 10.1021/ja01066a031

    37. [37]

      McAllister, S. D.; Rizvi, G.; Anavi-Goffer, S.; Hurst, D. P.; Barnett-Norris, J.; Lynch, D. L.; Reggio, P. H.; Abood, M. E. J. Med. Chem. 2003, 46, 5139.  doi: 10.1021/jm0302647

    38. [38]

      Wang, A. H.; Prouty, C. P.; Pelton, P. D.; Yong, M.; Demarest, K. T.; Murray, W. V.; Kuo, G. H. Bioorg. Med. Chem. Lett. 2010, 20, 1432.  doi: 10.1016/j.bmcl.2009.12.096

    39. [39]

      Shim, J. Y.; Collantes, E. R.; Welsh, W. J.; Subramaniam, B.; Howlett, A. C.; Eissenstat, M. A.; Ward, S. J. J. Med. Chem. 1998, 41, 4521.  doi: 10.1021/jm980305c

    40. [40]

      Wei, S. M.; Feng, X. Q.; Du, H. F. Org. Biomol. Chem. 2016, 14, 8026.  doi: 10.1039/C6OB01556E

    41. [41]

      Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.  doi: 10.1007/s00214-007-0310-x

    42. [42]

      Wang, Y. H.; Jie, J. L.; Zhao, H. M.; Bai, Y.; Qin, P. X.; Song, D. Acta Chim. Sinica 2018, 76, 475.
       

    43. [43]

      Huang, F.; Jiang, J. L.; Wen, M. W.; Wang, Z. X. J. Theor. Comput. Chem. 2014, 13, 1350074.  doi: 10.1142/S0219633613500740

    44. [44]

      Zhao, J. Y.; Wang, G. Q.; Li, S. H. Dalton Trans. 2015, 44, 9200.  doi: 10.1039/C5DT00978B

    45. [45]

      Rokob, T. A.; Hamza, A.; Papai, I. J. Am. Chem. Soc. 2009, 131, 10701.  doi: 10.1021/ja903878z

    46. [46]

      Antinolo, A.; Carrillo-Hermosilla, F.; Fernandez-Galan, R.; Martinez-Ferrer, J.; Alonso-Moreno, C.; Bravo, I.; Moreno-Blazquez, S.; Salgado, M.; Villasenor, E.; Albaladejo, J. Dalton Trans. 2016, 45, 10717.  doi: 10.1039/C6DT01237J

    47. [47]

      Zhao, L.; Li, H.; Lu, G.; Huang, F.; Zhang, C.; Wang, Z.-X. Dalton Trans. 2011, 40, 1929.  doi: 10.1039/c0dt01297a

    48. [48]

      Rokob, T. A.; Hamza, A.; Stirling, A.; Pápai, I. J. Am. Chem. Soc. 2009, 131, 2029.  doi: 10.1021/ja809125r

    49. [49]

      Das, S.; Pati, S. K. Chem.-Eur. J. 2017, 23, 1078.  doi: 10.1002/chem.201602774

    50. [50]

      Lu, Z. P.; Cheng, Z. H.; Chen, Z. X.; Weng, L. H.; Li, Z. H.; Wang, H. D. Angew. Chem.-Int. Ed. 2011, 50, 12227.  doi: 10.1002/anie.v50.51

    51. [51]

      Gao, S. L.; Wu, W.; Mo, Y. R. Int. J. Quantum Chem. 2011, 111, 3761.

    52. [52]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Ha-segawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannen-berg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 09, Revision A. 01, Gaussian, Inc, Wallingford, CT, 2009.

  • 加载中
    1. [1]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    2. [2]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    3. [3]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    4. [4]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    5. [5]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    6. [6]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    7. [7]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    8. [8]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    9. [9]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    10. [10]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    11. [11]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    12. [12]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    13. [13]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    14. [14]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    15. [15]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    16. [16]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    17. [17]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    18. [18]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    19. [19]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    20. [20]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

Metrics
  • PDF Downloads(6)
  • Abstract views(1007)
  • HTML views(151)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return