Citation: Wei Simin, Wang Yinghui, Zhao Hongmei. Study on the Mechanism of Frustrated Lewis Pairs Catalysed Hydrogenation of 2, 3-Disubstituted 2H-1, 4-Benzoxazine[J]. Acta Chimica Sinica, ;2019, 77(3): 278-286. doi: 10.6023/A18110461 shu

Study on the Mechanism of Frustrated Lewis Pairs Catalysed Hydrogenation of 2, 3-Disubstituted 2H-1, 4-Benzoxazine

  • Corresponding author: Wang Yinghui, wangyinghui@iccas.ac.cn Zhao Hongmei, hmzhao@iccas.ac.cn
  • Received Date: 13 November 2018
    Available Online: 31 March 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21705029, 21701131)the National Natural Science Foundation of China 21701131the National Natural Science Foundation of China 21705029

Figures(7)

  • Due to the different reactivity of hydrogenation reaction by metal-free FLPs catalyst for 2, 3-disubstituted 2H-1, 4-benzoxazine, we explored the reaction mechanism by density functional theory calculations. We have chosen three kinds of substrates with different hydrogenation reactivity as the prototype substrates and toluene as the solvent to calculate the potential energy profile for the FLPs-catalysed hydrogenation reaction at M06-2X/6-311++G(d, p) level with polarized continuum model (PCM) to simulate the solvent effect. From the potential energy profile, we found that when B(C6F5)3 encounters with 2, 3-diphenyl 2H-1, 4-benzoxazine (1o) or 2-methyl-3-phenyl 2H-1, 4-benzoxazine (1p) in toluene, it mainly generates the mixture of Lewis acid-base adducts and Frustrated Lewis Pairs, which has almost similar stability suggesting the transformation of each other by intermolecular rearrangement. However, it reveals big difference when the B(C6F5)3 encounters with 2, 3-dimethyl 2H-1, 4-benzoxazine (1q), where the Lewis acid-base adducts is the preference rather than the mixture of Lewis acid-base adducts and Frustrated Lewis Pairs or Frustrated Lewis Pairs since the lower stability energy. Due to the big energy gap (10.9 kcal/mol) between Lewis acid-base adducts and Frustrated Lewis Pairs, the generated Lewis acid-base adducts could not transform into Frustrated Lewis Pairs in the FLPs-catalysed hydrogenation of 1q at 298 K. That is the main reason why 1q is an inert substrate for the hydrogenation catalysed by FLPs. Natural Bond Orbital, Mulliken charge analysis and the proton affinity energy of N4 site was carried out to assess the electric effect of substituent at C3 on N4 site. It reveals negligible effect of substituent at C3 on N4 charge (basicity) and thus proposes that steric hindrance effect is the major factor affecting the stability energy of Lewis acid-base adducts and Frustrated Lewis Pairs. This is confirmed further by calculative investigation about the substituent effect (-CH2CH3, -CH(CH3)2 and C(CH3)3) on the stability of Lewis acid-base adducts and Frustrated Lewis Pairs in 2-methyl-3-substituted 2H-1, 4-benzoxazine, where with the increased steric hindrance effect, Lewis acid-base adducts tend to have similar stability with Frustrated Lewis Pairs even though less stability. These results clearly illustrate the elusive phenomenon in our previous experiment and may provide new insight for the design of another novel FLPs-catalysed hydrogenation reaction.
  • 加载中
    1. [1]

      Hey, D. A.; Reich, R. M.; Baratta, W.; Kuhn, F. E. Coord. Chem. Rev. 2018, 374, 114.  doi: 10.1016/j.ccr.2018.06.005

    2. [2]

      Lux, S.; Baldauf-Sommerbauer, G.; Siebenhofer, M. ChemSusChem 2018, 11, 3357.  doi: 10.1002/cssc.v11.19

    3. [3]

      Liu, W. P.; Sahoo, B.; Junge, K.; Beller, M. Acc. Chem. Res. 2018, 51, 1858.  doi: 10.1021/acs.accounts.8b00262

    4. [4]

      Ye, R. P.; Lin, L.; Li, Q. H.; Zhou, Z. F.; Wang, T. T.; Russell, C. K.; Adidharma, H.; Xu, Z. H.; Yao, Y. G.; Fan, M. H. Catal. Sci. Technol. 2018, 8, 3428.  doi: 10.1039/C8CY00608C

    5. [5]

      Song, J. J.; Huang, Z. F.; Pan, L.; Li, K.; Zhang, X. W.; Wang, L.; Zou, J. J. Appl. Catal. B-Environ. 2018, 227, 386.  doi: 10.1016/j.apcatb.2018.01.052

    6. [6]

      Rayhan, U.; Kowser, Z.; Islam, M. N.; Redshaw, C.; Yamato, T. Top. Catal. 2018, 61, 560.  doi: 10.1007/s11244-018-0994-2

    7. [7]

      Orlandi, M.; Brenna, D.; Harms, R.; Jost, S.; Benaglia, M. Org. Process Res. Dev. 2018, 22, 430.  doi: 10.1021/acs.oprd.6b00205

    8. [8]

      Filonenko, G. A.; van Putten, R.; Hensen, E. J. M.; Pidko, E. A. Chem. Soc. Rev. 2018, 47, 1459.  doi: 10.1039/C7CS00334J

    9. [9]

      Meemken, F.; Baiker, A. Chem. Rev. 2017, 117, 11522.  doi: 10.1021/acs.chemrev.7b00272

    10. [10]

      Schauermann, S. J. Phys. Chem. Lett. 2018, 9, 5555.  doi: 10.1021/acs.jpclett.8b01782

    11. [11]

      Meemken, F.; Rodriguez-Garcia, L. J. Phys. Chem. Lett. 2018, 9, 996.  doi: 10.1021/acs.jpclett.7b03360

    12. [12]

      Xie, J. H.; Zhou, Q. L. Acta Chim. Sinica 2012, 70, 1427.
       

    13. [13]

      Yamaguchi, R.; Ikeda, C.; Takahashi, Y.; Fujita, K.-i. J. Am. Chem. Soc. 2009, 131, 8410.  doi: 10.1021/ja9022623

    14. [14]

      Monfette, S.; Turner, Z. R.; Semproni, S. P.; Chirik, P. J. J. Am. Chem. Soc. 2012, 134, 4561.  doi: 10.1021/ja300503k

    15. [15]

      Hu, S. B.; Chen, M. W.; Zhai, X. Y.; Zhou, Y. G. Acta Chim. Sinica 2018, 76, 103.
       

    16. [16]

      Zhang, Q.; Liu, A.; Yu, H. Z.; Fu, Y. Acta Chim. Sinica 2018, 76, 113.  doi: 10.3866/PKU.WHXB201707101
       

    17. [17]

      Liu, X.; Han, Z. B.; Wang, Z.; Ding, K. L. Acta Chim. Sinica 2014, 72, 849.
       

    18. [18]

      Jiang, W.; Zhao, Q.; Tang, W. Chin. J. Chem. 2018, 36, 153.  doi: 10.1002/cjoc.201700645

    19. [19]

      Xia, J. Z.; Nie, Y.; Yang, G. Q.; Liu, Y. G.; Gridnev, I. D.; Zhang, W. B. Chin. J. Chem. 2018, 36, 612.  doi: 10.1002/cjoc.v36.7

    20. [20]

      Zhang, Y. W.; Chen, Y. L.; Fang, X. L.; Yuan, Y. Z.; Zhu, H. P. Chin. J. Org. Chem. 2017, 37, 2275.

    21. [21]

      Welch, G. C.; Juan, R. R. S.; Masuda, J. D.; Stephan, D. W. Science 2006, 314, 1124.  doi: 10.1126/science.1134230

    22. [22]

      Stephan, D. W. Acc. Chem. Res. 2015, 48, 306.  doi: 10.1021/ar500375j

    23. [23]

      Liu, Y. B.; Du, H. F. Acta Chim. Sinica 2014, 72, 771.
       

    24. [24]

      Meng, W.; Feng, X. Q.; Du, H. F. Acc. Chem. Res. 2018, 51, 191.  doi: 10.1021/acs.accounts.7b00530

    25. [25]

      Wang, H.; Zheng, Y.; Pan, Z. T.; Fu, H. L.; Ling, F.; Zhong, W. H. Chin. J. Org. Chem. 2017, 37, 301.

    26. [26]

      Mömming, C. M.; Frömel, S.; Kehr, G.; Fröhlich, R.; Grimme, S.; Erker, G. J. Am. Chem. Soc. 2009, 131, 12280.  doi: 10.1021/ja903511s

    27. [27]

      Mahdi, T.; Heiden, Z. M.; Grimme, S.; Stephan, D. W. J. Am. Chem. Soc. 2012, 134, 4088.  doi: 10.1021/ja300228a

    28. [28]

      Zhang, Z.; Du, H. Angew. Chem. Int. Ed. 2015, 54, 623.

    29. [29]

      Liu, Y. B.; Du, H. F. J. Am. Chem. Soc. 2013, 135, 6810.  doi: 10.1021/ja4025808

    30. [30]

      Liu, Y. B.; Du, H. F. J. Am. Chem. Soc. 2013, 135, 12968.  doi: 10.1021/ja406761j

    31. [31]

      Wei, S. M.; Du, H. F. J. Am. Chem. Soc. 2014, 136, 12261.  doi: 10.1021/ja507536n

    32. [32]

      Ren, X. Y.; Du, H. F. J. Am. Chem. Soc. 2016, 138, 810.  doi: 10.1021/jacs.5b13104

    33. [33]

      Fasano, V.; Curless, L. D.; Radcliffe, J. E.; Ingleson, M. J. Angew. Chem.-Int. Ed. 2017, 56, 9202.  doi: 10.1002/anie.201705100

    34. [34]

      Mahdi, T.; Stephan, D. W. J. Am. Chem. Soc. 2014, 136, 15809.  doi: 10.1021/ja508829x

    35. [35]

      Scott, D. J.; Fuchter, M. J.; Ashley, A. E. J. Am. Chem. Soc. 2014, 136, 15813.  doi: 10.1021/ja5088979

    36. [36]

      Brown, K. S.; Djerassi, C. J. Am. Chem. Soc. 1964, 86, 2451.  doi: 10.1021/ja01066a031

    37. [37]

      McAllister, S. D.; Rizvi, G.; Anavi-Goffer, S.; Hurst, D. P.; Barnett-Norris, J.; Lynch, D. L.; Reggio, P. H.; Abood, M. E. J. Med. Chem. 2003, 46, 5139.  doi: 10.1021/jm0302647

    38. [38]

      Wang, A. H.; Prouty, C. P.; Pelton, P. D.; Yong, M.; Demarest, K. T.; Murray, W. V.; Kuo, G. H. Bioorg. Med. Chem. Lett. 2010, 20, 1432.  doi: 10.1016/j.bmcl.2009.12.096

    39. [39]

      Shim, J. Y.; Collantes, E. R.; Welsh, W. J.; Subramaniam, B.; Howlett, A. C.; Eissenstat, M. A.; Ward, S. J. J. Med. Chem. 1998, 41, 4521.  doi: 10.1021/jm980305c

    40. [40]

      Wei, S. M.; Feng, X. Q.; Du, H. F. Org. Biomol. Chem. 2016, 14, 8026.  doi: 10.1039/C6OB01556E

    41. [41]

      Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.  doi: 10.1007/s00214-007-0310-x

    42. [42]

      Wang, Y. H.; Jie, J. L.; Zhao, H. M.; Bai, Y.; Qin, P. X.; Song, D. Acta Chim. Sinica 2018, 76, 475.
       

    43. [43]

      Huang, F.; Jiang, J. L.; Wen, M. W.; Wang, Z. X. J. Theor. Comput. Chem. 2014, 13, 1350074.  doi: 10.1142/S0219633613500740

    44. [44]

      Zhao, J. Y.; Wang, G. Q.; Li, S. H. Dalton Trans. 2015, 44, 9200.  doi: 10.1039/C5DT00978B

    45. [45]

      Rokob, T. A.; Hamza, A.; Papai, I. J. Am. Chem. Soc. 2009, 131, 10701.  doi: 10.1021/ja903878z

    46. [46]

      Antinolo, A.; Carrillo-Hermosilla, F.; Fernandez-Galan, R.; Martinez-Ferrer, J.; Alonso-Moreno, C.; Bravo, I.; Moreno-Blazquez, S.; Salgado, M.; Villasenor, E.; Albaladejo, J. Dalton Trans. 2016, 45, 10717.  doi: 10.1039/C6DT01237J

    47. [47]

      Zhao, L.; Li, H.; Lu, G.; Huang, F.; Zhang, C.; Wang, Z.-X. Dalton Trans. 2011, 40, 1929.  doi: 10.1039/c0dt01297a

    48. [48]

      Rokob, T. A.; Hamza, A.; Stirling, A.; Pápai, I. J. Am. Chem. Soc. 2009, 131, 2029.  doi: 10.1021/ja809125r

    49. [49]

      Das, S.; Pati, S. K. Chem.-Eur. J. 2017, 23, 1078.  doi: 10.1002/chem.201602774

    50. [50]

      Lu, Z. P.; Cheng, Z. H.; Chen, Z. X.; Weng, L. H.; Li, Z. H.; Wang, H. D. Angew. Chem.-Int. Ed. 2011, 50, 12227.  doi: 10.1002/anie.v50.51

    51. [51]

      Gao, S. L.; Wu, W.; Mo, Y. R. Int. J. Quantum Chem. 2011, 111, 3761.

    52. [52]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Ha-segawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannen-berg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 09, Revision A. 01, Gaussian, Inc, Wallingford, CT, 2009.

  • 加载中
    1. [1]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    2. [2]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    3. [3]

      Limin Shao Na Li . A Unified Equation Derived from the Charge Balance Equation for Constructing Acid-Base Titration Curve and Calculating Endpoint Error. University Chemistry, 2024, 39(11): 365-373. doi: 10.3866/PKU.DXHX202401086

    4. [4]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    5. [5]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    6. [6]

      Tongyu Zheng Teng Li Xiaoyu Han Yupei Chai Kexin Zhao Quan Liu Xiaohui Ji . A DIY pH Detection Agent Using Persimmon Extract for Acid-Base Discoloration Popularization Experiment. University Chemistry, 2024, 39(5): 27-36. doi: 10.3866/PKU.DXHX202309107

    7. [7]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    8. [8]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    9. [9]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    10. [10]

      Juan Hou Chen Zhou Jing Sun . Teaching Design of the Classical Analytical Chemistry Content Based on Logical and Innovative Thinking: A Case Study of the Application of Acid-Base Titration Method. University Chemistry, 2024, 39(4): 221-226. doi: 10.3866/PKU.DXHX202310023

    11. [11]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    12. [12]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    13. [13]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    14. [14]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    15. [15]

      Yuan Chun Lijun Yang Jinyue Yang Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072

    16. [16]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    17. [17]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    18. [18]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    19. [19]

      Houjin Li Wenjian Lan . Name Reactions in University Organic Chemistry Laboratory. University Chemistry, 2024, 39(4): 268-279. doi: 10.3866/PKU.DXHX202310016

    20. [20]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

Metrics
  • PDF Downloads(7)
  • Abstract views(1037)
  • HTML views(156)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return