Citation: Wang Haixu, Yang Guang, Cheng Tianshu, Wang Ning, Sun Rong, Wong Ching-Ping. Recent Advances in Hydrothermal Synthesis of Low Dimensional Boron Nitride Nanostructures[J]. Acta Chimica Sinica, ;2019, 77(4): 316-322. doi: 10.6023/A18110456 shu

Recent Advances in Hydrothermal Synthesis of Low Dimensional Boron Nitride Nanostructures

  • Corresponding author: Wang Ning, ning.wang@siat.ac.cn Sun Rong, rong.sun@siat.ac.cn
  • Received Date: 7 November 2018
    Available Online: 14 April 2018

    Fund Project: Project supported by the National Key R & D Project from Ministry of Science and Technology of China (No. 2017YFB0406200) and R & D Funds for basic Research Program of Shenzhen (No. JCYJ20150831154213681)R & D Funds for basic Research Program of Shenzhen JCYJ20150831154213681the National Key R & D Project from Ministry of Science and Technology of China 2017YFB0406200

Figures(6)

  • As an ultra-wide bandgap insulating material, boron nitride has attracted intense interest due to its high thermal conductivity, high chemical and thermal stability as well as their applications in thermal interface materials, photo/electro-catalysis, and energy storage. As for the low dimensional boron nitride nanostructures, e.g., nanosheets, nanotubes, nanorods, nanowires, nanospheres, and quantum dots, the high thermal conductivity (600 W/mK) and the ultra-large bandgap (5~6 eV) make them the promising candidate for thermal conductive composites, thermoelectric materials and electronic packaging materials, which gives rise to the hot research topic on the synthesis and properties of the boron nitride nanostructures. In this review, the recent advances in the hydrothermal synthesis of boron nitride nanostructures will be fully discussed, and the remarks on the issues need to be addressed, the comprehensive understanding of the mechanism and the new approaches for the hydrothermal synthesis will be proposed in the end.
  • 加载中
    1. [1]

      Zeng, X.; Sun, J.; Yao, Y.; Sun, R.; Xu, J. B.; Wong, C. P. ACS Nano 2017, 11, 5167.  doi: 10.1021/acsnano.7b02359

    2. [2]

      Zhan, Y.; Yan, J.; Wu, M.; Guo, L.; Lin, Z.; Qiu, B.; Chen, G.; Wong, K. Y. Talanta 2017, 174, 365.  doi: 10.1016/j.talanta.2017.06.032

    3. [3]

      Butler, S. Z.; Hollen, S. M.; Cao, L. Y.; Cui, Y.; Gupta, J. A.; Gutierrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J. X.; Ismach, A. F.; Johnston-Halperin, E.; Kuno, M.; Plashnitsa, V. V.; Robinson, R. D.; Ruoff, R. S.; Salahuddin, S.; Shan, J.; Shi, L.; Spencer, M. G.; Terrones, M.; Windl, W.; Goldberger, J. E. ACS Nano 2013, 7, 2898.  doi: 10.1021/nn400280c

    4. [4]

      Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Chem. Rev. 2013, 113, 3766.  doi: 10.1021/cr300263a

    5. [5]

      Tan, X. Y.; Yang, S. Y.; Li, H. J. Acta Chim. Sinica 2017, 75, 271.
       

    6. [6]

      Rubio, A.; Corkill, J. L.; Cohen, M. L. Phys. Rev. B 1994, 49, 5081.  doi: 10.1103/PhysRevB.49.5081

    7. [7]

      Li, L.; Jia, G. X.; Wang, X. X.; Wu, T. W.; Song, X. W.; An, S. L. Acta Chim. Sinica 2017, 75, 284.  doi: 10.7503/cjcu20160630
       

    8. [8]

      Chopra, N. G.; Luyken, R. J.; Cherrey, K.; Crespi, V. H.; Cohen, M. L.; Louie, S. G.; Zettl, A. Science 1995, 269, 966.  doi: 10.1126/science.269.5226.966

    9. [9]

      Loiseau, A.; Willaime, F.; Demoncy, N.; Hug, G.; Pascard, H. Phys. Rev. Lett. 1996, 76, 4737.  doi: 10.1103/PhysRevLett.76.4737

    10. [10]

      Nag, A.; Raidongia, K.; Hembram, K. P. S. S.; Datta, R.; Waghmare, U. V.; Rao, C. N. R. ACS Nano 2010, 4, 1539.  doi: 10.1021/nn9018762

    11. [11]

      Coleman, J. N.; Lotya, M.; O'Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J.; Shvets, I. V.; Arora, S. K.; Stanton, G.; Kim, H.-Y.; Lee, K.; Kim, G. T.; Duesberg, G. S.; Hallam, T.; Boland, J. J.; Wang, J. J.; Donegan, J. F.; Grunlan, J. C.; Moriarty, G.; Shmeliov, A.; Nicholls, R. J.; Perkins, J. M.; Grieveson, E. M.; Theuwissen, K.; McComb, D. W.; Nellist, P. D.; Nicolosi, V. Science 2011, 331, 568.  doi: 10.1126/science.1194975

    12. [12]

      Lin, Y.; Connell, J. W. Nanoscale 2012, 4, 6908.  doi: 10.1039/c2nr32201c

    13. [13]

      Pakdel, A.; Bando, Y.; Golberg, D. Chem. Soc. Rev. 2014, 43, 934.  doi: 10.1039/C3CS60260E

    14. [14]

      E, S. F.; Long, X. Y.; Li, C. W.; Geng, R. J.; Han, D. B.; Lu, W. B.; Yao, Y. G. Chem. Phys. Lett. 2017, 687, 307.  doi: 10.1016/j.cplett.2017.09.041

    15. [15]

      Zhang, Z. H.; Zhao, X. F.; Sun, H. B. J. Ceramics 2018, 39, 244.
       

    16. [16]

      Pakdel, A.; Bando, Y.; Golberg, D. Chem. Soc. Rev. 2014, 43, 934.  doi: 10.1039/C3CS60260E

    17. [17]

      Yuan, S. D.; Xiong, K.; Hu, K. P.; Zhang, Y. H.; Luo, Y.; Jiang, G. D. J. Mater. Eng. 2013, 10, 53.
       

    18. [18]

      Ding, J. H.; Zhao, H. R.; Yu, H. B. 2D Mater. 2018, 5, 045015.  doi: 10.1088/2053-1583/aad51a

    19. [19]

      Zheng, Z. Y.; Cox, M.; Li, B. J. Mater. Sci. 2017, 53, 66.

    20. [20]

      Du, Z. H.; Zeng, X. M.; Zhu, M. M.; Kanta, A.; Liu, Q.; Li, J. Z.; Kong, L. B. Ceram. Int. 2018, 44, 21461.  doi: 10.1016/j.ceramint.2018.08.207

    21. [21]

      Wang, N.; Yang, G.; Wang, H.; Yan, C.; Sun, R.; Wong, C.-P. Mater. Today 2018, DOI:10.1016/j.mattod.2018.10.039.  doi: 10.1016/j.mattod.2018.10.039

    22. [22]

      Li, X.; Hao, X.; Zhao, M.; Wu, Y.; Yang, J.; Tian, Y.; Qian, G. Adv. Mater. 2013, 25, 2200.  doi: 10.1002/adma.201204031

    23. [23]

      Alem, N.; Erni, R.; Kisielowski, C.; Rossell, M. D.; Gannett, W.; Zettl, A. Phys. Rev. B 2009, 80, 155425.  doi: 10.1103/PhysRevB.80.155425

    24. [24]

      Yi, M.; Shen, Z. G.; Zhu, J. Y. Chin. Sci. Bull. 2014, 59, 1794.  doi: 10.1007/s11434-014-0303-9

    25. [25]

      Du, M.; Li, X. L.; Wang, A. Z.; Wu, Y. Z.; Hao, X. P.; Zhao, M. W. Angew. Chem., Int. Ed. 2014, 53, 3645.  doi: 10.1002/anie.v53.14

    26. [26]

      Zheng, Z. Y.; Cox, M.; Li, B. J. Mater. Sci. 2017, 53, 66.

    27. [27]

      Liu, C.; Zhang, L.; Li, P.; Chen, Y. A.; Cui, W. W.; Zhang, H. L. J. Mater. Eng. 2016, 44, 122.
       

    28. [28]

      Hemmi, A.; Bernard, C.; Cun, H.; Roth, S.; Klockner, M.; Kalin, T.; Weinl, M.; Gsell, S.; Schreck, M.; Osterwalder, J.; Greber, T. Rev. Sci. Instrum. 2014, 85, 035101.  doi: 10.1063/1.4866648

    29. [29]

      Song, L.; Ci, L. J.; Lu, H.; Sorokin, P. B.; Jin, C. H.; Ni, J.; Kvashnin, A. G.; Kvashnin, D. G.; Lou, J.; Yakobson, B. I.; Ajayan, P. M. Nano Lett. 2010, 10, 3209.  doi: 10.1021/nl1022139

    30. [30]

      Kim, K. K.; Hsu, A.; Jia, X. T.; Kim, S. Min.; Shi, Y. M.; Hofmann, M.; Nezich, D.; Rodriguez-Nieva, J. F.; Dresselhaus, M.; Palacios, T.; Kong, J. Nano Lett. 2011, 12, 161.

    31. [31]

      He, L. F.; Shirahata, J.; Suematsu, H.; Nakayama, T.; Suzuki, T.; Jiang, W.; Niihara, K. Mater. Lett. 2014, 117, 120.  doi: 10.1016/j.matlet.2013.12.008

    32. [32]

      Kumar, V.; Nikhil, K.; Roy, P.; Lahiri, D.; Lahiri, I. RSC Adv. 2016, 6, 48025.  doi: 10.1039/C6RA05288F

    33. [33]

      Liang, D.; Ai, T.; Zhang, H. R.; Yan, X.; Zhou, Y. S. J. Solid Rocket Technol. 2018, 41, 642.

    34. [34]

      Tian, L.; Li, J.; Liang, F.; Chang, S.; Zhang, H.; Zhang, M.; Zhang, S. J. Colloid Interface Sci. 2019, 536, 664.  doi: 10.1016/j.jcis.2018.10.098

    35. [35]

      Yang, G.; Wang, N.; Wang, H. X.; Song, R. In 2018 IEEE 68th Electronic Components, Technology Conference, San Diego, California USA, 2018, pp. 1421~1426.

    36. [36]

      Lee, R. S.; Gavillet, J.; Lamy de la Chapelle, M.; Loiseau, A.; Cochon, J. L.; Pigache, D.; Thibault, J.; Willaime, F. Phys. Rev. B 2001, 64, 121405.  doi: 10.1103/PhysRevB.64.121405

    37. [37]

      Li, L. H.; Chen, Y.; Glushenkov, A. M. Nanotechnology 2010, 21, 105601.  doi: 10.1088/0957-4484/21/10/105601

    38. [38]

      Kim, M. J.; Chatterjee, S.; Kim, S. M.; Stach, E. A.; Bradley, M. G.; Pender, M. J.; Sneddon, L. G.; Maruyama, B. Nano Lett. 2008, 8, 3298.  doi: 10.1021/nl8016835

    39. [39]

      Zhang, X.; Lian, G.; Si, H. B.; Wang, J.; Cui, D. L.; Wang, Q. L. J. Mater. Chem. A 2013, 1, 11992.  doi: 10.1039/c3ta12447a

    40. [40]

      Xue, Q.; Zhang, H. J.; Zhu, M. S.; Wang, Z. F.; Pei, Z. X.; Huang, Y.; Huang, Y.; Song, X. F.; Zeng, H. B.; Zhi, C. Y. RSC Adv. 2016, 6, 79090.  doi: 10.1039/C6RA16744F

    41. [41]

      Lin, L. X.; Xu, Y. X.; Zhang, S. W.; Ross, I. M.; Ong, A. C. M.; Allwood, D. A. Small 2014, 10, 60.  doi: 10.1002/smll.201301001

    42. [42]

      Fan, L.; Zhou, Y. M.; He, M.; Tong, Y.; Zhong, X.; Fang, J. S.; Bu, X. H. J. Mater. Sci. 2017, 52, 13522.  doi: 10.1007/s10853-017-1395-9

    43. [43]

      Peng, D.; Zhang, L.; Li, F. F.; Cui, W. R.; Liang, R. P.; Qiu, J. D. ACS Appl. Mater. Interfaces 2018, 10, 7315.  doi: 10.1021/acsami.7b15250

    44. [44]

      Xing, H.; Zhai, Q.; Zhang, X.; Li, J.; Wang, E. Anal. Chem. 2018, 90, 2141.  doi: 10.1021/acs.analchem.7b04428

    45. [45]

      Lei, Z.; Xu, S.; Wan, J.; Wu, P. Nanoscale 2015, 7, 18902.  doi: 10.1039/C5NR05960G

    46. [46]

      Li, H.; Tay, R. Y.; Tsang, S. H.; Zhen, X.; Teo, E. H. Small 2015, 11, 6491.  doi: 10.1002/smll.201501632

    47. [47]

      Angizi, S.; Hatamie, A.; Ghanbari, H.; Simchi, A. ACS Appl. Mater. Interfaces 2018, 10, 28819.  doi: 10.1021/acsami.8b07332

    48. [48]

      Yao, Q. H.; Feng, Y. F.; Rong, M. C.; He, S. G.; Chen, X. Microchim. Acta 2017, 184, 4217.  doi: 10.1007/s00604-017-2496-5

    49. [49]

      Huo, B.; Liu, B.; Chen, T.; Cui, L.; Xu, G.; Liu, M.; Liu, J. Langmuir 2017, 33, 10673.  doi: 10.1021/acs.langmuir.7b01699

  • 加载中
    1. [1]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    2. [2]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    3. [3]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    4. [4]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    5. [5]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    6. [6]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    7. [7]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    8. [8]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    9. [9]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    10. [10]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    11. [11]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    12. [12]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    13. [13]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    14. [14]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    15. [15]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    16. [16]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    17. [17]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    18. [18]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    19. [19]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    20. [20]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

Metrics
  • PDF Downloads(74)
  • Abstract views(2309)
  • HTML views(576)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return