Citation: Chen Zhiyao, Liu Jiewei, Cui Hao, Zhang Li, Su Chengyong. Applications of Porphyrin Metal-Organic Frameworks in CO2 Capture and Conversion[J]. Acta Chimica Sinica, ;2019, 77(3): 242-252. doi: 10.6023/A18100440 shu

Applications of Porphyrin Metal-Organic Frameworks in CO2 Capture and Conversion

  • Corresponding author: Zhang Li, zhli99@mail.sysu.edu.cn Su Chengyong, cesscy@mail.sysu.edu.cn
  • Received Date: 20 October 2018
    Available Online: 27 March 2018

    Fund Project: the Science and Technology Planning Project of Guangzhou 201504010031the Science and Technology Planning Project of Guangzhou 201707010168Project supported by the National Natural Science Foundation of China (Nos. 21773314, 21720102007, 21821003, 21890380), the Natural Science Foundation of Guangdong Province (No. S2013030013474), the Science and Technology Planning Project of Guangzhou (Nos. 201707010168, 201504010031) and the Fundamental Research Funds for the Central Universities (Nos. 16lgjc68, 17lgjc12)the National Natural Science Foundation of China 21720102007the National Natural Science Foundation of China 21821003the Natural Science Foundation of Guangdong Province S2013030013474the Fundamental Research Funds for the Central Universities 16lgjc68the Fundamental Research Funds for the Central Universities 17lgjc12the National Natural Science Foundation of China 21773314the National Natural Science Foundation of China 21890380

Figures(15)

  • The worldwide climate issues such as the global warming and the sea level rising are becoming serious. In order to relieve the stress of environment, a lot of attempts have been made to reduce the emission of CO2, which is the main component of greenhouse gases. CO2 capture and conversion (C3) is an emerging technology, which directly converts the captured CO2 into high value-added compounds or fuels such as formic acid, methanol and methane. Porphyrin metal-organic frameworks (PMOFs) are based on porphyrin or metalloporphyrin ligands and metal nodes. The combination of excellent thermal/chemical stability, strong absorption of visible light and long lifetime of excited state, and high CO2 capture capacity paves the way for the applications of PMOFs in C3. In this review, we have firstly introduced the synthesis strategies of PMOFs, which are guided by framework topology, pillar-layer and metal-organic cage (MOC). With the good control of the pore sizes and thermal/chemical stability, the catalytic performances of PMOFs can be easily tuned:PMOFs that are prepared via the pillar-layer and MOC strategies are of relatively lower stability, and the ones that are guided by framework topology are of higher stability. Next, we have classified the types of PMOFs according to the secondary building units (SBUs). There are four types of PMOFs, and the SBUs include (1) the low-valence metal ions such as Cu2+ and Cd2+; (2) the paddle-wheel M2(COO)4 (M=Cu2+, Zn2+) units; (3) the infinite metal (such as Al3+, Ga3+ and In3+) oxide chains; (4) the hard metal (such as Cr3+, Fe3+, Ti4+, Zr4+, Hf4+, and rare earth metals) oxide clusters. The structure characters and stability have been described afterwards. The coordination bonds in the first and second types of SBUs are relatively weak. For comparison, most of the PMOFs based on the infinite metal oxide chains and hard metal oxide cluster exhibit high thermal/chemical stabilities, which could be used for practical applications towards C3. Then, we have summarized the recent works about applications of PMOFs in C3, which are divided into four parts, including the selective capture of CO2, organic transformations with CO2, CO2 photoreduction and CO2 electroreduction. Selective capture of CO2 from a mixture of gases is one of the most important applications, considering that less energy and lower temperatures/pressures are required. Through the catalytic cycloaddition reaction of CO2 and epoxides, the important products of cyclic carbonates can be produced. Some of the catalytic reactions can be carried out at 0.1 MPa and room temperature with high yields. With the assistance of environmentally friendly visible light, CO2 can be photoreduced into fuels such as formate ion, methanol and methane. In addition, two typical examples of CO2 electroreduction have been discussed in this review. Through the process of photoreduction and electroreduction, clean energies such as solar light and electricity can be employed to help transfer the green gas CO2 into fuels. At the end, we have discussed the merits and challenges of PMOFs in the applications of C3. Selective adsorption of CO2 from other gases, especially NOx, SOx and other flue gases, is highly required. The efficiency of the catalytic cycloaddition reaction should be further improved, especially cutting down the reaction time. Reaction efficiency and product selectivity of photoreduction and electroreduction should be improved. Photoelectrocatalytic reduction of CO2, which combines both advantages of photoreduction and electroreduction, should be a hot topic in the future. The ideal system should include both a photoanode for water oxidation and a photocathode for CO2 reduction that are linked by a wire without external applied bias, achieving the dream of artificial photosynthesis.
  • 加载中
    1. [1]

      Feng, J.; Zeng, S.; Feng, J.; Dong, H.; Zhang, X. Chin. J. Chem. 2018, 36, 961.  doi: 10.1002/cjoc.v36.10

    2. [2]

      Chang, S.; Liang, F.; Yao, Y.; Ma, W.; Yang, B.; Dai, Y. Acta Chim. Sinica 2018, 76, 515(in Chinese).
       

    3. [3]

      Du, P.; Su, T.; Luo, X.; Zhou, X.; Qin, Z.; Ji, H.; Chen, J. Chin. J. Chem. 2018, 36, 538.  doi: 10.1002/cjoc.v36.6

    4. [4]

      Yan, T.; Xing, G.; Ben, T. Acta Chim. Sinica 2018, 76, 366(in Chinese).
       

    5. [5]

      Xu, J.; Zhang, C.; Wang, X.; Jiang, J.; Wang, F. Acta Chim. Sinica 2017, 75, 473(in Chinese).
       

    6. [6]

      Li, Y.; Zou, B.; Xiao, A.; Zhang, H. Chin. J. Chem. 2017, 35, 1501.  doi: 10.1002/cjoc.v35.10

    7. [7]

      Huang, G.; Chen, Y.; Jiang, H. Acta Chim. Sinica 2016, 74, 113(in Chinese).
       

    8. [8]

      Yang, Q.; Xu, Q.; Jiang, H.-L. Chem. Soc. Rev. 2017, 46, 4774.  doi: 10.1039/C6CS00724D

    9. [9]

      Jiao, L.; Wang, Y.; Jiang, H.-L.; Xu, Q. Adv. Mater. 2018, 30, 1703663.  doi: 10.1002/adma.v30.37

    10. [10]

      Liang, X.; Chen, L.; Zhang, L.; Su, C. Chin. Sci. Bull. 2018, 63, 248(in Chinese).

    11. [11]

      Haszeldine, R. S. Science 2009, 325, 1647.  doi: 10.1126/science.1172246

    12. [12]

      Boot-Handford, M. E.; Abanades, J. C.; Anthony, E. J.; Blunt, M. J.; Brandani, S.; Mac Dowell, N.; Fernández, J. R.; Ferrari, M.-C.; Gross, R.; Hallett, J. P.; Haszeldine, R. S.; Heptonstall, P.; Lyngfelt, A.; Makuch, Z.; Mangano, E.; Porter, R. T. J.; Pourkashanian, M.; Rochelle, G. T.; Shah, N.; Yao, J. G.; Fennell, P. S. Energy Environ. Sci. 2014, 7, 130.  doi: 10.1039/C3EE42350F

    13. [13]

      Cuéllar-Franca, R. M.; Azapagic, A. J. CO2 Util. 2015, 9, 82.  doi: 10.1016/j.jcou.2014.12.001

    14. [14]

      Markewitz, P.; Kuckshinrichs, W.; Leitner, W.; Linssen, J.; Zapp, P.; Bongartz, R.; Schreiber, A.; Müller, T. E. Energy Environ. Sci. 2012, 5, 7281.  doi: 10.1039/c2ee03403d

    15. [15]

      Chen, X. M.; Zhang, J. P. Metal-Organic Framework Materials, Chemical Industry Press, 2017, pp. 90~147(in Chinese).

    16. [16]

      Liu, J.; Chen, L.; Cui, H.; Zhang, J.; Zhang, L.; Su, C.-Y. Chem. Soc. Rev. 2014, 43, 6011.  doi: 10.1039/C4CS00094C

    17. [17]

      Gao, W.; Chrzanowski, M.; Ma, S. Chem. Soc. Rev. 2014, 43, 5841.  doi: 10.1039/C4CS00001C

    18. [18]

      Chen, H.; Zhang, X.; Gong, L.; He, J.; Xu, X.; Xu, Z.; Liu, H. Acta Phys.-Chim. Sin. 2016, 32, 1983(in Chinese).

    19. [19]

      Abrahams, B. F.; Hoskins, B. F.; Robson, R. J. Am. Chem. Soc. 1991, 113, 3606.  doi: 10.1021/ja00009a065

    20. [20]

      Lin, K.-J. Angew. Chem., Int. Ed. 1999, 38, 2730.  doi: 10.1002/(ISSN)1521-3773

    21. [21]

      Liu, T.; Feng, D.; Chen, Y.-P.; Zou, L.; Bosch, M.; Yuan, S.; Wei, Z.; Fordham, S.; Wang, K.; Zhou, H.-C. J. Am. Chem. Soc. 2015, 137, 413.  doi: 10.1021/ja5111317

    22. [22]

      Wang, K.; Lv, X.; Feng, D.; Li, J.; Chen, S.; Sun, J.; Song, L.; Xie, Y.; Li, J.; Zhou, H.-C. J. Am. Chem. Soc. 2016, 138, 914.  doi: 10.1021/jacs.5b10881

    23. [23]

      Lv, X.; Wang, K.; Wang, B.; Su, J.; Zou, X.; Xie, Y.; Li, J.; Zhou, H.-C. J. Am. Chem. Soc. 2017, 139, 211.  doi: 10.1021/jacs.6b09463

    24. [24]

      Huang, N.; Wang, K.; Drake, H.; Cai, P.; Pang, J.; Li, J.; Che, S.; Huang, L.; Wang, Q.; Zhou, H.-C. J. Am. Chem. Soc. 2018, 140, 6383.  doi: 10.1021/jacs.8b02710

    25. [25]

      Feng, D.; Chung, W.-C.; Wei, Z.; Gu, Z.; Jiang, H.; Chen, Y.; Darensbourg, D. J.; Zhou, H. J. Am. Chem. Soc. 2013, 135, 17105.  doi: 10.1021/ja408084j

    26. [26]

      Cui, H.; Wang, Y.; Wang, Y.; Fan, Y.; Zhang L.; Su, C.-Y. CrystEngComm 2016, 18, 2203.  doi: 10.1039/C6CE00358C

    27. [27]

      Wang, Y.; Cui, H.; Wei, Z.; Wang, H.-P.; Zhang, L.; Su, C.-Y. Chem. Sci. 2017, 8, 775.  doi: 10.1039/C6SC03288E

    28. [28]

      Wang, Y.; Cui, H.; Zhang, L.; Su, C.-Y. ChemCatChem 2018, 10, 3901.  doi: 10.1002/cctc.201800597

    29. [29]

      Liu, J.; Fan, Y.-Z.; Xu, Y.-W.; Zhang, L.; Su, C.-Y. ChemSusChem 2018, 11, 2340.  doi: 10.1002/cssc.v11.14

    30. [30]

      Liu, J.; Fan, Y. Z.; Li, X.; Wei, Z.; Xu, Y.-W.; Zhang, L.; Su, C.-Y. Appl. Catal. B-Environ. 2018, 231, 173.  doi: 10.1016/j.apcatb.2018.02.055

    31. [31]

      Chen, L.; Cui, H.; Wang, Y.; Liang, X.; Zhang, L.; Su, C.-Y. Dalton Trans. 2018, 47, 3940.  doi: 10.1039/C8DT00434J

    32. [32]

      Choi, E.-Y.; Barron, P. M.; Novotny, R. W.; Son, H.-T.; Hu, C.; Choe, W. Inorg. Chem. 2009, 48, 426.  doi: 10.1021/ic801677y

    33. [33]

      Farha, O. K.; Shultz, A. M.; Sarjeant, A. A.; Nguyen, S. T.; Hupp, J. T. J. Am. Chem. Soc. 2011, 133, 5652.  doi: 10.1021/ja111042f

    34. [34]

      Wang, X.; Meng, L.; Cheng, Q.; Kim, C.; Wojtas, L.; Chrzanowski, M.; Chen, Y.; Zhang, X. P.; Ma, S. J. Am. Chem. Soc. 2011, 133, 16322.  doi: 10.1021/ja204339e

    35. [35]

      Feng, D.; Jiang, H.; Chen, Y.; Gu, Z.; Wei, Z.; Zhou, H. Inorg. Chem. 2013, 52, 12661.  doi: 10.1021/ic4018536

    36. [36]

      Fateeva, A.; Chater, P. A.; Ireland, C. P.; Tahir, A. A.; Khimyak, Y. Z.; Wiper, P. V.; Darwent, J. R.; Rosseinsky, M. J. Angew. Chem., Int. Ed. 2012, 51, 7440.  doi: 10.1002/anie.201202471

    37. [37]

      Rhauderwiek, T.; Waitschat, S.; Wuttke, S.; Reinsch, H.; Bein, T.; Stock, N. Inorg. Chem. 2016, 55, 5312.  doi: 10.1021/acs.inorgchem.6b00221

    38. [38]

      Leng, F.; Liu, H.; Ding, M.; Lin, Q.-P.; Jiang, H.-L. ACS Catal. 2018, 8, 4583.  doi: 10.1021/acscatal.8b00764

    39. [39]

      Pearson, R. G. J. Am. Chem. Soc. 1963, 85, 3533.  doi: 10.1021/ja00905a001

    40. [40]

      Yuan, S.; Feng, L.; Wang, K.; Pang, J.; Bosch, M.; Lollar, C.; Sun, Y.; Qin, J.; Yang, X.; Zhang, P.; Wang, Q.; Zou, L.; Zhang, Y.; Zhang, L.; Fang, Y.; Li, J.; Zhou, H.-C. Adv. Mater. 2018, 30, 1704303.  doi: 10.1002/adma.201704303

    41. [41]

      Morris, W.; Volosskiy, B.; Demir, S.; Gándara, F.; McGrier, P. L.; Furukawa, H.; Cascio, D.; Stoddart, J. F.; Yaghi, O. M. Inorg. Chem. 2012, 51, 6443.  doi: 10.1021/ic300825s

    42. [42]

      Feng, D.; Gu, Z.; Li, J.; Jiang, H.; Wei, Z.; Zhou, H. Angew. Chem., Int. Ed. 2012, 51, 10307.  doi: 10.1002/anie.201204475

    43. [43]

      Jiang, H.; Feng, D.; Wang, K.; Gu, Z.; Wei, Z.; Chen, Y.; Zhou, H. J. Am. Chem. Soc. 2013, 135, 13934.  doi: 10.1021/ja406844r

    44. [44]

      Feng, D.; Gu, Z.; Chen, Y.; Park, J.; Wei, Z.; Sun, Y.; Bosch, M.; Yuan, S.; Zhou, H.-C. J. Am. Chem. Soc. 2014, 136, 17714.  doi: 10.1021/ja510525s

    45. [45]

      Chen, Y.; Hoang, T.; Ma, S. Inorg. Chem. 2012, 51, 12600.  doi: 10.1021/ic301923x

    46. [46]

      Wang, T. C.; Bury, W.; Gómez-Gualdrón, D. A.; Vermeulen, N. A.; Mondloch, J. E.; Deria, P.; Zhang, K.; Moghadam, P. Z.; Sarjeant, A. A.; Snurr, R. Q.; Stoddart, J. F.; Hupp, J. T.; Farha, O. K. J. Am. Chem. Soc. 2015, 137, 3585.  doi: 10.1021/ja512973b

    47. [47]

      Lin, Q.; Bu, X.; Kong, A.; Mao, C.; Zhao, X.; Bu, F.; Feng, P. J. Am. Chem. Soc. 2015, 137, 2235.  doi: 10.1021/jacs.5b00076

    48. [48]

      Zheng, J.; Wu, M.; Jiang, F.; Su, W.; Hong, M. Chem. Sci. 2015, 6, 3466.  doi: 10.1039/C5SC00213C

    49. [49]

      Xu, L.; Luo, Y.; Sun, L.; Xu, Y.; Cai, Z.; Fang, M.; Yuan, R.; Du, H. Chem. Eur. J. 2016, 22, 6268.  doi: 10.1002/chem.v22.18

    50. [50]

      Wang, K.; Feng, D.; Liu, T.; Su, J.; Yuan, S.; Chen, Y.; Bosch, M.; Zou, X.; Zhou, H. J. Am. Chem. Soc. 2014, 136, 13983.  doi: 10.1021/ja507269n

    51. [51]

      Yuan, S.; Liu, T.; Feng, D.; Tian, J.; Wang, K.; Qin, J.; Zhang, Q.; Chen, Y.; Bosch, M.; Zou, L.; Teat, S. J.; Dalgarno, S. J.; Zhou, H. Chem. Sci. 2015, 6, 3926.  doi: 10.1039/C5SC00916B

    52. [52]

      Xu, L.; Zhai, M.-K.; Wang, F.; Sun, L.; Du, H.-B. Dalton Trans. 2016, 45, 17108.  doi: 10.1039/C6DT03678C

    53. [53]

      Trickett, C. A.; Helal, A.; Al-Maythalony, B. A.; Yamani, Z. H.; Cordova, K. E.; Yaghi, O. M. Nat. Rev. Mater. 2017, 2, 17045.  doi: 10.1038/natrevmats.2017.45

    54. [54]

      Li, J.; Yu, J.; Lu, W.; Sun, L. B.; Sculley J.; Balbuena, P. B.; Zhou, H.-C. Nat. Commun. 2013, 4, 1538.  doi: 10.1038/ncomms2552

    55. [55]

      Johnson, J. A.; Chen, S.; Reeson, T. C.; Chen, Y.; Zeng, X. C.; Zhang, J. Chem. Eur. J. 2014, 20, 7632.  doi: 10.1002/chem.201402006

    56. [56]

      Wang, X.; Chrzanowski, M.; Gao, W.; Wojtas, L.; Chen, Y.; Za-worotko, M. J.; Ma, S. Chem. Sci. 2012, 3, 2823.  doi: 10.1039/c2sc20330h

    57. [57]

      Maina, J. W.; Pozo-Gonzalo, C.; Kong, L.; Schütz, J.; Hill, M.; Dumée, L. F. Mater. Horiz. 2017, 4, 345.  doi: 10.1039/C6MH00484A

    58. [58]

      Gao, W.; Tsai, C.-Y.; Wojtas, L.; Thiounn, T.; Lin, C.-C.; Ma, S. Inorg. Chem. 2016, 55, 7291.  doi: 10.1021/acs.inorgchem.6b00937

    59. [59]

      Zhang, L.; Yuan, S.; Feng, L.; Guo, B.; Qin, J.-S.; Xu, B.; Lollar, C.; Sun, D.; Zhou, H.-C. Angew. Chem., Int. Ed. 2018, 57, 5095.  doi: 10.1002/anie.201802661

    60. [60]

      Tu, W.; Zhou, Y.; Zou, Z. Adv. Mater. 2014, 26, 4607.  doi: 10.1002/adma.v26.27

    61. [61]

      Chen, Y.; Wang, D.; Deng, X.; Li, Z. Catal. Sci. Technol. 2017, 7, 4893.  doi: 10.1039/C7CY01653K

    62. [62]

      Liu, Y.; Yang, Y.; Sun, Q.; Wang, Z.; Huang, B.; Dai, Y.; Qin, X.; Zhang, X. ACS Appl. Mater. Interfaces 2013, 5, 7654.  doi: 10.1021/am4019675

    63. [63]

      Zhang, H.; Wei, J.; Dong, J.; Liu, G.; Shi, L.; An, P.; Zhao, G.; Kong, J.; Wang, X.; Meng, X.; Zhang, J.; Ye, J. Angew. Chem., Int. Ed. 2016, 55, 14310.  doi: 10.1002/anie.v55.46

    64. [64]

      Xu, H.-Q.; Hu, J.; Wang, D.; Li, Z.; Zhang, Q.; Luo, Y.; Yu, S.-H.; Jiang, H.-L. J. Am. Chem. Soc. 2015, 137, 13440.  doi: 10.1021/jacs.5b08773

    65. [65]

      Chen, E.-X.; Qiu, M.; Zhang, Y.-F.; Zhu, Y.-S.; Liu, L.-Y.; Sun, Y.-Y.; Bu, X.; Zhang, J.; Lin, Q. Adv. Mater. 2018, 30, 1704388.  doi: 10.1002/adma.v30.2

    66. [66]

      Liao, P.-Q.; Shen, J.-Q.; Zhang, J.-P. Coord. Chem. Rev. 2018, 373, 22.  doi: 10.1016/j.ccr.2017.09.001

    67. [67]

      Whipple, D. T.; Kenis, P. J. A. J. Phys. Chem. Lett. 2010, 1, 3451.  doi: 10.1021/jz1012627

    68. [68]

      Hod, I.; Sampson, M. D.; Deria, P.; Kubiak, C. P.; Farha, O. K.; Hupp, J. T. ACS Catal. 2015, 5, 6302.  doi: 10.1021/acscatal.5b01767

    69. [69]

      Kornienko, N.; Zhao, Y.; Kley, C. S.; Zhu, C.; Kim, D.; Lin, S.; Chang, C. J.; Yaghi, O. M.; Yang, P. J. Am. Chem. Soc. 2015, 137, 14129.  doi: 10.1021/jacs.5b08212

    70. [70]

      Xie, S.; Zhang, Q.; Liu, G.; Wang, Y. Chem. Commun. 2016, 52, 35.  doi: 10.1039/C5CC07613G

  • 加载中
    1. [1]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    2. [2]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    3. [3]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    4. [4]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    5. [5]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    6. [6]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    7. [7]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    8. [8]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    9. [9]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    10. [10]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    11. [11]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    12. [12]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    13. [13]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    14. [14]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

    15. [15]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    16. [16]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    17. [17]

      Li LiFanpeng ChenBohang ZhaoYifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240

    18. [18]

      Jinglin CHENGXiaoming GUOTao MENGXu HULiang LIYanzhe WANGWenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152

    19. [19]

      Qian-Qian TangLi-Fang FengZhi-Peng LiShi-Hao WuLong-Shuai ZhangQing SunMei-Feng WuJian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454

    20. [20]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

Metrics
  • PDF Downloads(93)
  • Abstract views(4198)
  • HTML views(1360)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return