Applications of Porphyrin Metal-Organic Frameworks in CO2 Capture and Conversion
- Corresponding author: Zhang Li, zhli99@mail.sysu.edu.cn Su Chengyong, cesscy@mail.sysu.edu.cn
Citation: Chen Zhiyao, Liu Jiewei, Cui Hao, Zhang Li, Su Chengyong. Applications of Porphyrin Metal-Organic Frameworks in CO2 Capture and Conversion[J]. Acta Chimica Sinica, ;2019, 77(3): 242-252. doi: 10.6023/A18100440
Feng, J.; Zeng, S.; Feng, J.; Dong, H.; Zhang, X. Chin. J. Chem. 2018, 36, 961.
doi: 10.1002/cjoc.v36.10
Chang, S.; Liang, F.; Yao, Y.; Ma, W.; Yang, B.; Dai, Y. Acta Chim. Sinica 2018, 76, 515(in Chinese).
Du, P.; Su, T.; Luo, X.; Zhou, X.; Qin, Z.; Ji, H.; Chen, J. Chin. J. Chem. 2018, 36, 538.
doi: 10.1002/cjoc.v36.6
Yan, T.; Xing, G.; Ben, T. Acta Chim. Sinica 2018, 76, 366(in Chinese).
Xu, J.; Zhang, C.; Wang, X.; Jiang, J.; Wang, F. Acta Chim. Sinica 2017, 75, 473(in Chinese).
Li, Y.; Zou, B.; Xiao, A.; Zhang, H. Chin. J. Chem. 2017, 35, 1501.
doi: 10.1002/cjoc.v35.10
Huang, G.; Chen, Y.; Jiang, H. Acta Chim. Sinica 2016, 74, 113(in Chinese).
Yang, Q.; Xu, Q.; Jiang, H.-L. Chem. Soc. Rev. 2017, 46, 4774.
doi: 10.1039/C6CS00724D
Jiao, L.; Wang, Y.; Jiang, H.-L.; Xu, Q. Adv. Mater. 2018, 30, 1703663.
doi: 10.1002/adma.v30.37
Liang, X.; Chen, L.; Zhang, L.; Su, C. Chin. Sci. Bull. 2018, 63, 248(in Chinese).
Haszeldine, R. S. Science 2009, 325, 1647.
doi: 10.1126/science.1172246
Boot-Handford, M. E.; Abanades, J. C.; Anthony, E. J.; Blunt, M. J.; Brandani, S.; Mac Dowell, N.; Fernández, J. R.; Ferrari, M.-C.; Gross, R.; Hallett, J. P.; Haszeldine, R. S.; Heptonstall, P.; Lyngfelt, A.; Makuch, Z.; Mangano, E.; Porter, R. T. J.; Pourkashanian, M.; Rochelle, G. T.; Shah, N.; Yao, J. G.; Fennell, P. S. Energy Environ. Sci. 2014, 7, 130.
doi: 10.1039/C3EE42350F
Cuéllar-Franca, R. M.; Azapagic, A. J. CO2 Util. 2015, 9, 82.
doi: 10.1016/j.jcou.2014.12.001
Markewitz, P.; Kuckshinrichs, W.; Leitner, W.; Linssen, J.; Zapp, P.; Bongartz, R.; Schreiber, A.; Müller, T. E. Energy Environ. Sci. 2012, 5, 7281.
doi: 10.1039/c2ee03403d
Chen, X. M.; Zhang, J. P. Metal-Organic Framework Materials, Chemical Industry Press, 2017, pp. 90~147(in Chinese).
Liu, J.; Chen, L.; Cui, H.; Zhang, J.; Zhang, L.; Su, C.-Y. Chem. Soc. Rev. 2014, 43, 6011.
doi: 10.1039/C4CS00094C
Gao, W.; Chrzanowski, M.; Ma, S. Chem. Soc. Rev. 2014, 43, 5841.
doi: 10.1039/C4CS00001C
Chen, H.; Zhang, X.; Gong, L.; He, J.; Xu, X.; Xu, Z.; Liu, H. Acta Phys.-Chim. Sin. 2016, 32, 1983(in Chinese).
Abrahams, B. F.; Hoskins, B. F.; Robson, R. J. Am. Chem. Soc. 1991, 113, 3606.
doi: 10.1021/ja00009a065
Lin, K.-J. Angew. Chem., Int. Ed. 1999, 38, 2730.
doi: 10.1002/(ISSN)1521-3773
Liu, T.; Feng, D.; Chen, Y.-P.; Zou, L.; Bosch, M.; Yuan, S.; Wei, Z.; Fordham, S.; Wang, K.; Zhou, H.-C. J. Am. Chem. Soc. 2015, 137, 413.
doi: 10.1021/ja5111317
Wang, K.; Lv, X.; Feng, D.; Li, J.; Chen, S.; Sun, J.; Song, L.; Xie, Y.; Li, J.; Zhou, H.-C. J. Am. Chem. Soc. 2016, 138, 914.
doi: 10.1021/jacs.5b10881
Lv, X.; Wang, K.; Wang, B.; Su, J.; Zou, X.; Xie, Y.; Li, J.; Zhou, H.-C. J. Am. Chem. Soc. 2017, 139, 211.
doi: 10.1021/jacs.6b09463
Huang, N.; Wang, K.; Drake, H.; Cai, P.; Pang, J.; Li, J.; Che, S.; Huang, L.; Wang, Q.; Zhou, H.-C. J. Am. Chem. Soc. 2018, 140, 6383.
doi: 10.1021/jacs.8b02710
Feng, D.; Chung, W.-C.; Wei, Z.; Gu, Z.; Jiang, H.; Chen, Y.; Darensbourg, D. J.; Zhou, H. J. Am. Chem. Soc. 2013, 135, 17105.
doi: 10.1021/ja408084j
Cui, H.; Wang, Y.; Wang, Y.; Fan, Y.; Zhang L.; Su, C.-Y. CrystEngComm 2016, 18, 2203.
doi: 10.1039/C6CE00358C
Wang, Y.; Cui, H.; Wei, Z.; Wang, H.-P.; Zhang, L.; Su, C.-Y. Chem. Sci. 2017, 8, 775.
doi: 10.1039/C6SC03288E
Wang, Y.; Cui, H.; Zhang, L.; Su, C.-Y. ChemCatChem 2018, 10, 3901.
doi: 10.1002/cctc.201800597
Liu, J.; Fan, Y.-Z.; Xu, Y.-W.; Zhang, L.; Su, C.-Y. ChemSusChem 2018, 11, 2340.
doi: 10.1002/cssc.v11.14
Liu, J.; Fan, Y. Z.; Li, X.; Wei, Z.; Xu, Y.-W.; Zhang, L.; Su, C.-Y. Appl. Catal. B-Environ. 2018, 231, 173.
doi: 10.1016/j.apcatb.2018.02.055
Chen, L.; Cui, H.; Wang, Y.; Liang, X.; Zhang, L.; Su, C.-Y. Dalton Trans. 2018, 47, 3940.
doi: 10.1039/C8DT00434J
Choi, E.-Y.; Barron, P. M.; Novotny, R. W.; Son, H.-T.; Hu, C.; Choe, W. Inorg. Chem. 2009, 48, 426.
doi: 10.1021/ic801677y
Farha, O. K.; Shultz, A. M.; Sarjeant, A. A.; Nguyen, S. T.; Hupp, J. T. J. Am. Chem. Soc. 2011, 133, 5652.
doi: 10.1021/ja111042f
Wang, X.; Meng, L.; Cheng, Q.; Kim, C.; Wojtas, L.; Chrzanowski, M.; Chen, Y.; Zhang, X. P.; Ma, S. J. Am. Chem. Soc. 2011, 133, 16322.
doi: 10.1021/ja204339e
Feng, D.; Jiang, H.; Chen, Y.; Gu, Z.; Wei, Z.; Zhou, H. Inorg. Chem. 2013, 52, 12661.
doi: 10.1021/ic4018536
Fateeva, A.; Chater, P. A.; Ireland, C. P.; Tahir, A. A.; Khimyak, Y. Z.; Wiper, P. V.; Darwent, J. R.; Rosseinsky, M. J. Angew. Chem., Int. Ed. 2012, 51, 7440.
doi: 10.1002/anie.201202471
Rhauderwiek, T.; Waitschat, S.; Wuttke, S.; Reinsch, H.; Bein, T.; Stock, N. Inorg. Chem. 2016, 55, 5312.
doi: 10.1021/acs.inorgchem.6b00221
Leng, F.; Liu, H.; Ding, M.; Lin, Q.-P.; Jiang, H.-L. ACS Catal. 2018, 8, 4583.
doi: 10.1021/acscatal.8b00764
Pearson, R. G. J. Am. Chem. Soc. 1963, 85, 3533.
doi: 10.1021/ja00905a001
Yuan, S.; Feng, L.; Wang, K.; Pang, J.; Bosch, M.; Lollar, C.; Sun, Y.; Qin, J.; Yang, X.; Zhang, P.; Wang, Q.; Zou, L.; Zhang, Y.; Zhang, L.; Fang, Y.; Li, J.; Zhou, H.-C. Adv. Mater. 2018, 30, 1704303.
doi: 10.1002/adma.201704303
Morris, W.; Volosskiy, B.; Demir, S.; Gándara, F.; McGrier, P. L.; Furukawa, H.; Cascio, D.; Stoddart, J. F.; Yaghi, O. M. Inorg. Chem. 2012, 51, 6443.
doi: 10.1021/ic300825s
Feng, D.; Gu, Z.; Li, J.; Jiang, H.; Wei, Z.; Zhou, H. Angew. Chem., Int. Ed. 2012, 51, 10307.
doi: 10.1002/anie.201204475
Jiang, H.; Feng, D.; Wang, K.; Gu, Z.; Wei, Z.; Chen, Y.; Zhou, H. J. Am. Chem. Soc. 2013, 135, 13934.
doi: 10.1021/ja406844r
Feng, D.; Gu, Z.; Chen, Y.; Park, J.; Wei, Z.; Sun, Y.; Bosch, M.; Yuan, S.; Zhou, H.-C. J. Am. Chem. Soc. 2014, 136, 17714.
doi: 10.1021/ja510525s
Chen, Y.; Hoang, T.; Ma, S. Inorg. Chem. 2012, 51, 12600.
doi: 10.1021/ic301923x
Wang, T. C.; Bury, W.; Gómez-Gualdrón, D. A.; Vermeulen, N. A.; Mondloch, J. E.; Deria, P.; Zhang, K.; Moghadam, P. Z.; Sarjeant, A. A.; Snurr, R. Q.; Stoddart, J. F.; Hupp, J. T.; Farha, O. K. J. Am. Chem. Soc. 2015, 137, 3585.
doi: 10.1021/ja512973b
Lin, Q.; Bu, X.; Kong, A.; Mao, C.; Zhao, X.; Bu, F.; Feng, P. J. Am. Chem. Soc. 2015, 137, 2235.
doi: 10.1021/jacs.5b00076
Zheng, J.; Wu, M.; Jiang, F.; Su, W.; Hong, M. Chem. Sci. 2015, 6, 3466.
doi: 10.1039/C5SC00213C
Xu, L.; Luo, Y.; Sun, L.; Xu, Y.; Cai, Z.; Fang, M.; Yuan, R.; Du, H. Chem. Eur. J. 2016, 22, 6268.
doi: 10.1002/chem.v22.18
Wang, K.; Feng, D.; Liu, T.; Su, J.; Yuan, S.; Chen, Y.; Bosch, M.; Zou, X.; Zhou, H. J. Am. Chem. Soc. 2014, 136, 13983.
doi: 10.1021/ja507269n
Yuan, S.; Liu, T.; Feng, D.; Tian, J.; Wang, K.; Qin, J.; Zhang, Q.; Chen, Y.; Bosch, M.; Zou, L.; Teat, S. J.; Dalgarno, S. J.; Zhou, H. Chem. Sci. 2015, 6, 3926.
doi: 10.1039/C5SC00916B
Xu, L.; Zhai, M.-K.; Wang, F.; Sun, L.; Du, H.-B. Dalton Trans. 2016, 45, 17108.
doi: 10.1039/C6DT03678C
Trickett, C. A.; Helal, A.; Al-Maythalony, B. A.; Yamani, Z. H.; Cordova, K. E.; Yaghi, O. M. Nat. Rev. Mater. 2017, 2, 17045.
doi: 10.1038/natrevmats.2017.45
Li, J.; Yu, J.; Lu, W.; Sun, L. B.; Sculley J.; Balbuena, P. B.; Zhou, H.-C. Nat. Commun. 2013, 4, 1538.
doi: 10.1038/ncomms2552
Johnson, J. A.; Chen, S.; Reeson, T. C.; Chen, Y.; Zeng, X. C.; Zhang, J. Chem. Eur. J. 2014, 20, 7632.
doi: 10.1002/chem.201402006
Wang, X.; Chrzanowski, M.; Gao, W.; Wojtas, L.; Chen, Y.; Za-worotko, M. J.; Ma, S. Chem. Sci. 2012, 3, 2823.
doi: 10.1039/c2sc20330h
Maina, J. W.; Pozo-Gonzalo, C.; Kong, L.; Schütz, J.; Hill, M.; Dumée, L. F. Mater. Horiz. 2017, 4, 345.
doi: 10.1039/C6MH00484A
Gao, W.; Tsai, C.-Y.; Wojtas, L.; Thiounn, T.; Lin, C.-C.; Ma, S. Inorg. Chem. 2016, 55, 7291.
doi: 10.1021/acs.inorgchem.6b00937
Zhang, L.; Yuan, S.; Feng, L.; Guo, B.; Qin, J.-S.; Xu, B.; Lollar, C.; Sun, D.; Zhou, H.-C. Angew. Chem., Int. Ed. 2018, 57, 5095.
doi: 10.1002/anie.201802661
Tu, W.; Zhou, Y.; Zou, Z. Adv. Mater. 2014, 26, 4607.
doi: 10.1002/adma.v26.27
Chen, Y.; Wang, D.; Deng, X.; Li, Z. Catal. Sci. Technol. 2017, 7, 4893.
doi: 10.1039/C7CY01653K
Liu, Y.; Yang, Y.; Sun, Q.; Wang, Z.; Huang, B.; Dai, Y.; Qin, X.; Zhang, X. ACS Appl. Mater. Interfaces 2013, 5, 7654.
doi: 10.1021/am4019675
Zhang, H.; Wei, J.; Dong, J.; Liu, G.; Shi, L.; An, P.; Zhao, G.; Kong, J.; Wang, X.; Meng, X.; Zhang, J.; Ye, J. Angew. Chem., Int. Ed. 2016, 55, 14310.
doi: 10.1002/anie.v55.46
Xu, H.-Q.; Hu, J.; Wang, D.; Li, Z.; Zhang, Q.; Luo, Y.; Yu, S.-H.; Jiang, H.-L. J. Am. Chem. Soc. 2015, 137, 13440.
doi: 10.1021/jacs.5b08773
Chen, E.-X.; Qiu, M.; Zhang, Y.-F.; Zhu, Y.-S.; Liu, L.-Y.; Sun, Y.-Y.; Bu, X.; Zhang, J.; Lin, Q. Adv. Mater. 2018, 30, 1704388.
doi: 10.1002/adma.v30.2
Liao, P.-Q.; Shen, J.-Q.; Zhang, J.-P. Coord. Chem. Rev. 2018, 373, 22.
doi: 10.1016/j.ccr.2017.09.001
Whipple, D. T.; Kenis, P. J. A. J. Phys. Chem. Lett. 2010, 1, 3451.
doi: 10.1021/jz1012627
Hod, I.; Sampson, M. D.; Deria, P.; Kubiak, C. P.; Farha, O. K.; Hupp, J. T. ACS Catal. 2015, 5, 6302.
doi: 10.1021/acscatal.5b01767
Kornienko, N.; Zhao, Y.; Kley, C. S.; Zhu, C.; Kim, D.; Lin, S.; Chang, C. J.; Yaghi, O. M.; Yang, P. J. Am. Chem. Soc. 2015, 137, 14129.
doi: 10.1021/jacs.5b08212
Xie, S.; Zhang, Q.; Liu, G.; Wang, Y. Chem. Commun. 2016, 52, 35.
doi: 10.1039/C5CC07613G
Yangrui Xu , Yewei Ren , Xinlin Liu , Hongping Li , Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
Jiaxing Cai , Wendi Xu , Haoqiang Chi , Qian Liu , Wa Gao , Li Shi , Jingxiang Low , Zhigang Zou , Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Shu-Ran Xu , Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173
Tianbo Jia , Lili Wang , Zhouhao Zhu , Baikang Zhu , Yingtang Zhou , Guoxing Zhu , Mingshan Zhu , Hengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692
Yufei Jia , Fei Li , Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Qin Cheng , Ming Huang , Qingqing Ye , Bangwei Deng , Fan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112
Tian-Yu Gao , Xiao-Yan Mo , Shu-Rong Zhang , Yuan-Xu Jiang , Shu-Ping Luo , Jian-Heng Ye , Da-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364