Citation: Liu Jiao, Sun Hailong, Yin Lu, Yuan Yaxian, Xu Minmin, Yao Jianlin. On-line Monitoring on the Micro-synthesis of α-Phenylethanol by Microfluidic Chip Combined with Surface Enhanced Raman Spectroscopy[J]. Acta Chimica Sinica, ;2019, 77(3): 257-262. doi: 10.6023/A18100434 shu

On-line Monitoring on the Micro-synthesis of α-Phenylethanol by Microfluidic Chip Combined with Surface Enhanced Raman Spectroscopy

  • Corresponding author: Yuan Yaxian, yuanyaxian@suda.edu.cn Yao Jianlin, jlyao@suda.edu.cn
  • Received Date: 17 October 2018
    Available Online: 29 March 2018

    Fund Project: the National Natural Science Foundation of China 21673152Project supported by the National Natural Science Foundation of China (Nos. 21673152, 21773166) and the Scientific and Technologic Infrastructure of Suzhou (No. SZS201708)the Scientific and Technologic Infrastructure of Suzhou SZS201708the National Natural Science Foundation of China 21773166

Figures(7)

  • Surface Enhanced Raman Spectroscopy (SERS) has been developed as one of powerful tools for monitoring the organic reaction due to its extremely high sensitivity. Moreover, SERS provided the abundant fingerprint spectroscopic information for the structure analysis, and it could be integrated with other techniques to achieve the on-line detection. Microfluidic technology, due to its significant role in the miniaturization, integration and portability of instrument, exhibits the promising application in biomedicine, high throughput drug screening, the environment monitoring and protection. In recent years, the microfluidic chip as one of the modern technology for analyzing various substances at the same time has been rapidly developed. Compared with the conventional technique, it has the significant advantage and convenience, such as low reagent consumption, short reaction time, high reaction efficiency and so on. Herein, the microfluidic chip was employed as the microreactor for organic reaction with the ultralow dosage, and the SERS detection was integrated into the microreactor to realize the continuous monitoring on the substrates and products. The magnetic core-shell nanoparticles Fe3O4@Ag acted as the SERS substrate with reasonable magnetism and SERS activities, and it demonstrated that the magnetic nanoparticles was flowed in the microchannel of microfluidic chip and was enriched by the external magnetic field. The introduction of magnetic nanoparticles is beneficial to improve the detection sensitivity by the magnetic aggregation and to reach the continuous SERS detection by applying and retracting external magnetic field. At the same time, it exhibited the significant advantages of low amount of reactants, high efficiency and easy to realize on-line detection and high throughput screening in organic synthesis. The micro-synthesis of α-phenylethanol and the real-time monitoring of SERS are performed by the alternative enrichment and de-enrichment of magnetic nanoparticles in the present case. By changing the flow rate of reactants in the channel of microfluidic chip, different concentrations of reactants and products were obtained in a certain duration. The influence of the spectral features from the reactants was eliminated by differential spectrum technique, and the distinctive SERS spectrum of α-phenylethanol was presented accordingly. It demonstrated that the integration of microfluidic chip and SERS technique could be developed as a powerful tool for on-line monitoring organic reactions and exhibits the promising application in high throughput screening of organic chemical reactions.
  • 加载中
    1. [1]

      Zhao, Y.; Zhang, Y. L.; Huang, J. A.; Zhang, Z.; Chen, X.; Zhang, W. J. Mater. Chem. A 2015, 3, 6408.  doi: 10.1039/C4TA07076C

    2. [2]

      Parisi, J.; Dong, Q.; Lei, Y. RSC Adv. 2015, 5, 14081.  doi: 10.1039/C4RA15174G

    3. [3]

      Yaghobian, F.; Weimann, T.; Guttler, B.; Stosch, R. Lab. Chip. 2011, 11, 2955.  doi: 10.1039/c1lc20032a

    4. [4]

      Miller, P. W.; Long, N. J.; de Mello, A. J.; Vilar, R.; Passchierc, J.; Gee, A. Chem. Commun. 2006, 5, 546.

    5. [5]

      Singh, R.; Lee, H. J.; Singh, A. K.; Kim, D. P. Korean J. Chem. Eng. 2016, 33, 2253.  doi: 10.1007/s11814-016-0114-6

    6. [6]

      Zhou, J. J.; Tang, Z. K.; Zhang, C.; Wang, D. T.; Zhang, K.; Sun, H. B. Chin. J. Org. Chem. 2016, 36, 2662.

    7. [7]

      Gao, Y. P.; Wang, J. B. Chin. J. Org. Chem. 2018, 38, 1275.

    8. [8]

      Norbert, K.; Philipp, T.; Christoph, F. T.; Gabriele, L.; Timothy, N. React. Chem. Eng. 2017, 2, 258.  doi: 10.1039/C7RE00021A

    9. [9]

      Elvira, K. S.; Casadevall, i.; Solvas, X.; Wootton, R. C. R.; de Mello, A. J. Nature Chem. 2013, 5, 905.  doi: 10.1038/nchem.1753

    10. [10]

      Huang, W. G.; Sun, H. F.; Zhang, S. J. Acta Chim. Sinica 2016, 74, 518.
       

    11. [11]

      Wang, H. S.; Lin, P. T.; Zhao, S. L.; Li, S. T.; Lu, X.; Liang, H. Chin. J. Chem. 2017, 35, 943.  doi: 10.1002/cjoc.v35.6

    12. [12]

      Zhang, X. N.; Stefanick, S.; Villani, F. J. Org. Process Res. Dev. 2004, 8, 455.  doi: 10.1021/op034193x

    13. [13]

      Jin, J.; Cai, M. M.; Li, J. X. Synlett 2009, 15, 2534.

    14. [14]

      Kong, L. J.; Lin, Q.; Lv, X. M.; Yang, Y. T.; Jia, Y.; Zhou, Y. M. Green Chem. 2009, 11, 1108.  doi: 10.1039/b822513c

    15. [15]

      Cao, Y. C.; Jin, R. C.; Mirkin, C. A. Science 2002, 297, 1536.  doi: 10.1126/science.297.5586.1536

    16. [16]

      Long, H. X.; Zhen, Z.; Tang, L. J.; Jiang, J. H. Acta Chim. Sinica 2013, 71, 739.
       

    17. [17]

      Li, C. Y.; Lai, K. Q.; Zhang, Y. Y.; Pei, L.; Huang, Y. Q. Acta Chim. Sinica 2013, 71, 221.
       

    18. [18]

      Li, X. H.; Chen, G. Y.; Yang, L. B.; Jin, Z.; Liu, J. H. Adv. Funct. Mater. 2010, 20, 2815.  doi: 10.1002/adfm.201000792

    19. [19]

      Liu, W. J.; Zhu, Z. N.; Deng, K.; Li, Z.; T.; Zhou, Y. L.; Qiu, H. B.; Gao, Y.; Che, S.; Tang, Z. T. J. Am. Chem. Soc. 2013, 135, 9659.  doi: 10.1021/ja312327m

    20. [20]

      Gao, Z. G.; Zheng, T. T.; Deng, J.; Li, X. R.; Qu, Y. Y.; Lu, Y.; Liu, T. J.; Luo, Y.; Zhao, W. J.; Lin, B. C. Acta Chim. Sinica 2017, 75, 355.
       

    21. [21]

      Wang, Y.; Rauf, S.; Grewal, Y. S.; Spadafora, L. J.; Shiddiky, M. J.; Cangelosi, G. A.; Schlucker, S.; Trau, M. Anal. Chem. 2014, 86, 9930.  doi: 10.1021/ac5027012

    22. [22]

      Huh, Y. S.; Lowe, A. J.; Strickland, A. D.; Batt, C. A.; Erickson, D. J. Am. Chem. Soc. 2009, 131, 2208.  doi: 10.1021/ja807526v

    23. [23]

      Wang, C.; Yu, C. Nanotechnology 2015, 26, 092001.  doi: 10.1088/0957-4484/26/9/092001

    24. [24]

      Wang, W.; Xu, M. M.; Guo, Q. H.; Yuan, Y. X.; Shen, L. M.; Gu, R. A.; Yao, J. L. RSC Adv. 2015, 5, 47640.  doi: 10.1039/C5RA05562H

    25. [25]

      Mao, H.; Wu, W.; She, D.; Sun, G.; Lv, P.; Xu, J. Small 2014, 10, 127.  doi: 10.1002/smll.201300036

    26. [26]

      Xu, B. B.; Zhang, R.; Liu, X. Q.; Wang, H.; Zhang, Y. L.; Jiang, H. B.; Wang, L.; Ma, Z. C.; Ku, J. F.; Xiao, F. S.; Sun, H. B. Chem. Commun. 2012, 48, 1680.  doi: 10.1039/C2CC16612G

    27. [27]

      Sun, H. L.; Xu, M. M.; Guo, Q. H.; Yuan, Y. X.; Shen, L. M.; Gu, R. A.; Yao, J. L. Spectrochim. Acta A 2013, 114, 579.  doi: 10.1016/j.saa.2013.05.098

  • 加载中
    1. [1]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    2. [2]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    3. [3]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    4. [4]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    5. [5]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    6. [6]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    7. [7]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    8. [8]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    9. [9]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    10. [10]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    11. [11]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    12. [12]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    13. [13]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    14. [14]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    15. [15]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    16. [16]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    17. [17]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    18. [18]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    19. [19]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    20. [20]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

Metrics
  • PDF Downloads(17)
  • Abstract views(1008)
  • HTML views(217)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return