Citation: Xia Lei, Cheng Zhen, Zhu Hua, Yang Zhi. Preparation and Preliminary Molecular Imaging Study of 124I in-situ Labeled Organic Melanin Nanoparticles[J]. Acta Chimica Sinica, ;2019, 77(2): 172-178. doi: 10.6023/A18090410 shu

Preparation and Preliminary Molecular Imaging Study of 124I in-situ Labeled Organic Melanin Nanoparticles

  • Corresponding author: Zhu Hua, zhuhuananjing@163.com Yang Zhi, pekyz@163.com
  • Received Date: 29 September 2018
    Available Online: 3 March 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 81671733, 81501519 and 81571705) and Beijing Nova program (No. Z171100001117020)the National Natural Science Foundation of China 81571705Beijing Nova program Z171100001117020the National Natural Science Foundation of China 81501519the National Natural Science Foundation of China 81671733

Figures(10)

  • Developing biocompatible, multifunctional and in-situ labeling nanoplatform is high challenging for molecular imaging. Organic derivates melanin nanoparticles (MNPs) holds great potential to be multimodal contrast agents, and have been used for photoacoustic imaging, magnetic resonance imaging, and 64Cu PET imaging with simple modifications. In order to extend MNPs application in molecular imaging, here a novel radio-nuclide was applied to in-situ labeling of MNPs. Large numbers of active dihydroxyindole/indolequinone groups and natural binding ability of MNPs enabled them to have the ability to label different types of radionuclides which have unique half-life and functions, especially long-life elemental nuclide. This project explored the in-situ labeling methods of organic melanin nanoparticles with a promising diagnostic radionuclides named Iodine-124 (124I), and using this novel multifunctional organic nanoparticles for preliminary molecular imaging studies. Generally, ultrafine particle size melanin nanoparticles (5.5 nm in diameter) were prepared by ultrasonication method using naturally occurring melanin, then PEG3500 which had amino group at both ends was used as a stabilizer agent to obtain PEG-MNP nanocarriers (7.5 nm in diameter) with better water solubility and stability. The nanoparticles were full characterized by dynamic light scattering (DLS), transmission electron microscope (TEM) and 1H NMR, respectively. Then, one kind of elemental nuclide was labeled. Classic iodine labeled method with N-Bromo Succinimide (NBS) was used as oxidant to oxidize active dihydroxyindole/indolequinone ring of PEG-MNP for electrophilic substitution reaction labeling 124I (100.8 h). This reaction rate is extremely fast (60 s reaction time) and high labelling yield (>99%). The 124I was labeled successfully and in-situ labeled PEG-MNP nanocarriers were obtained. After that, 124I and 124I-PEG-MNP were used to further preclinical evaluation by micro-PET imaging. Micro-PET images were collected at 2 h, 24 h and 48 h after intravenous injection 7.4 MBq 124I and 124I-PEG-MNP in normal Kunming mice (n=3). The ROI target area of heart, liver and thyroid were delineated for semi-quantitative analysis. Then, in order to verify the imaging ability of 124I-PEG-MNP in solid tumor. We built human pancreatic cancer BxPC3 xenograft model (n=3), and Micro-PET scans were performed at different time points. Results showed that the labeling rate of 124I on PEG-MNP was 99.9%. And the radiochemical purity in vitro stability of 124I-PEG-MNP in 96 h was more than 90%. Micro-PET images showed that 124I-PEG-MNP had no obvious thyroid uptake which indicated no de-marking in mice. The radio-distribution of 124I and 124I-PEG-MNP was substantially different in liver and thyroid (P < 0.001). In vivo semi-quantitative analysis showed that the radio uptakes of organs were consistent with the distribution of nanoparticles. And the PET imaging of xenograft mice showed that 124I-PEG-MNP can utilize the enhanced permeability and retention effect (EPR) to be significantly enriched at the tumor and retained in the tumor site for more than 48 h. PEG-MNP has the ability to label long half-life nuclide 124I. This research provides an experimental basis for further construction of long-circulation multimodal imaging probes.
  • 加载中
    1. [1]

      Ding, L.; Liu, Z.; Aggrey, M. O.; Li, C.; Chen, J.; Tong, L. Mini Rev. Med. Chem. 2015, 15, 529.  doi: 10.2174/138955751507150424104334

    2. [2]

      Liu, M. L.; Wu, Q.; Shi, H. F.; An, Z. F.; Huang, W. Acta Chim. Sinica 2018, 76, 246(in Chinese).
       

    3. [3]

      Xu, M. M.; Guo, C.; Hu, G.; Xu, S.; Wang, L. Chinese J. Chem. 2018, 36, 25.  doi: 10.1002/cjoc.201700382

    4. [4]

      Sun, Y.; Hong, S.; Ma, X.; Cheng, K.; Wang, J.; Zhang, Z.; Yang, M.; Jiang, Y.; Hong, X.; Cheng, Z. Chem. Sci. 2016, 7, 5888.  doi: 10.1039/C6SC01536K

    5. [5]

      Castellanos, G.; Fernández-Seara, M. A.; Lorenzo-Betancor, O.; Ortega-Cubero, S.; Puigvert, M.; Uranga, J.; Vidorreta, M.; Irigoyen, J.; Lorenzo, E.; Muñoz-Barrutia, A.; Ortiz-de-Solorzano, C.; Pastor, P.; Pastor, M. A. Mov. Disord. 2015, 30, 945.  doi: 10.1002/mds.v30.7

    6. [6]

      Liu, Y.; Ai, K.; Liu, J.; Deng, M.; He, Y.; Lu, L. Adv. Mater. 2013, 25, 1353.  doi: 10.1002/adma.v25.9

    7. [7]

      Hong, S. H.; Sun, Y.; Tang, C.; Cheng, K.; Zhang, R.; Fan, Q.; Xu, L.; Huang, D.; Zhao, A.; Cheng, Z. Bioconjugate Chem. 2017, 28, 1925.  doi: 10.1021/acs.bioconjchem.7b00245

    8. [8]

      Ha, S. W.; Cho, H. S.; Yoon, Y. I.; Jang, M. S.; Hong, K. S.; Hui, E.; Lee, J. H.; Yoon, T. J. J. Nanobiotechnology 2017, 15, 73.  doi: 10.1186/s12951-017-0304-3

    9. [9]

      Li, Y.; Xie, Y.; Wang, Z.; Zang, N.; Carniato, F.; Huang, Y.; Andolina, C. M.; Parent, L. R.; Ditri, T. B.; Walter, E. D.; Botta, M.; Rinehart, J. D.; Gianneschi, N. C. ACS Nano 2016, 10, 10186.  doi: 10.1021/acsnano.6b05502

    10. [10]

      Xu, W.; Sun, J.; Li, L.; Peng, X.; Zhang, R.; Wang, B. Biomater. Sci. 2017, 19, 207.

    11. [11]

      Zhu, H.; Li, N.; Lin, X. F.; Hong, Y.; Yang, Z. Acta Chim. Sinica 2014, 72, 427(in Chinese).  doi: 10.7503/cjcu20130631
       

    12. [12]

      Bosch, P.; Sucunza, D.; Mendicuti, F.; Domingo, A.; Vaquero, J. Org. Chem. Front. 2018, 5, 1916.  doi: 10.1039/C8QO00236C

    13. [13]

      Yang, M. P.; Su, N.; Li, Y. X.; Wang, L.; Ma, L. F.; Zhang, Y.; Li, J.; Yang, B. Q.; Kang, L. L. Chinese J. Org. Chem. 2018, 38, 636.  doi: 10.6023/cjoc201709017

    14. [14]

      Wang, Y. J.; Wang, W. Acta Chim. Sinica 2017, 75, 1061.
       

    15. [15]

      Fan, Q.; Cheng, K.; Hu, X.; Ma, X.; Zhang, R.; Yang, M.; Lu, X.; Xing, L.; Huang, W.; Gambhir, S. S.; Cheng, Z. J. Am. Chem. Soc. 2014, 136, 15185.  doi: 10.1021/ja505412p

    16. [16]

      Xie, Q.; Zhu, H.; Wang, F.; Meng, X. X.; Ren, Q. S.; Xia, C. Q.; Yang, Z. Molecules 2017, 22, 641.  doi: 10.3390/molecules22040641

    17. [17]

      Hoshyar, N.; Gray, S.; Han, H.; Bao, G. Nanomedicine 2016, 11, 673.  doi: 10.2217/nnm.16.5

    18. [18]

      Lubberink, M.; Herzog, H. Eur. J. Nucl. Med. Mol. Imaging 2011, 38, 10.  doi: 10.1007/s00259-011-1768-2

    19. [19]

      Zhang, R.; Fan, Q.; Yang, M.; Cheng, K.; Lu, X.; Zhang, L.; Huang, W.; Cheng, Z. Adv. Mater. 2015, 27, 5063.  doi: 10.1002/adma.201502201

    20. [20]

      Choi, C. H.; Zuckerman, J. E.; Webster, P.; Davis, M. E. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 6656.  doi: 10.1073/pnas.1103573108

  • 加载中
    1. [1]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    2. [2]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    3. [3]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    4. [4]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    5. [5]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    6. [6]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    7. [7]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    8. [8]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    9. [9]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    10. [10]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    11. [11]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    12. [12]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    13. [13]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    14. [14]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    15. [15]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    16. [16]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    17. [17]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    18. [18]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    19. [19]

      Chunyang Zheng Shiyu Liu Nuo Yi Hong Shang . The Adventures in the Kingdom of Plant Pigments. University Chemistry, 2024, 39(9): 170-176. doi: 10.3866/PKU.DXHX202308085

    20. [20]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

Metrics
  • PDF Downloads(10)
  • Abstract views(2119)
  • HTML views(280)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return