Citation: Wang Ning, Pang Hongwei, Yu Shujun, Gu Pengcheng, Song Shuang, Wang Hongqing, Wang Xiangke. Investigation of Adsorption Mechanism of Layered Double Hydroxides and Their Composites on Radioactive Uranium:A Review[J]. Acta Chimica Sinica, ;2019, 77(2): 143-152. doi: 10.6023/A18090404 shu

Investigation of Adsorption Mechanism of Layered Double Hydroxides and Their Composites on Radioactive Uranium:A Review

  • Corresponding author: Wang Hongqing, HQWang2001cn@126.com Wang Xiangke, xkwang@ncepu.edu.cn
  • Received Date: 26 September 2018
    Available Online: 10 February 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21577032) and the Science Challenge Project (No. TZ201604)the National Natural Science Foundation of China 21577032the Science Challenge Project TZ201604

Figures(7)

  • With the rapid development of nuclear industry, nuclear energy, as a kind of low-carbon energy, has been widely used in the world. However, in the development and application of nuclear energy, a large amount of radionuclides, especially the radioactive uranium, have been inevitably discharged into the environment, causing serious environmental pollution and having great harm to human health. Layered double hydroxides (LDHs) have become the excellent adsorbents in environmental pollution treatments due to easy preparation, large specific surface area, the unique nanostructure and excellent ion exchange capacity. Hence, the preparation of layered double hydroxides and their composites for the efficient removal of radioactive uranium is one of the hot issues in the field of environmental science, which include coprecipitation, ion exchange, hydrothermal method, the urea hydrolysis method, aerogel, microwave-crystallization and separate nucleation/crystallization isolation method. Besides the aforementioned methods, other reported synthesis methods of LDHs include the secondary intercalation method (an intercalation method involving dissolution and the re-coprecipitation method), reconstruction method based on the "memory effect", N2 protection synthesis, mechanochemical synthesis, surface synthesis, template synthesis, and others. The modification methods of layered double hydroxides can be divided into calcination, intercalation and compounding method, which significantly increase the active sites and further improve the adsorption performance of the materials to radioactive uranium. In addition, the adsorption mechanism has been thoroughly investigated with spectroscopic analysis techniques such as Fourier transformed infrared spectroscopy (FT-IR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Extended X-ray absorption fine structure (EXAFS). In conclusion, the review briefly discuss the application prospects of layered double hydroxides and their composites in the treatment of water pollution, which provide definitive reference values for the further research and practical application of environmental management in the future.
  • 加载中
    1. [1]

      Yin, L.; Song, S.; Wang, X. X.; Niu, F. L.; Ma, R.; Yu, S. J.; Wen, T.; Chen, Y. T.; Hayat, T.; Alsaedi, A.; Wang, X. K. Environ. Pollut. 2018, 238, 725.  doi: 10.1016/j.envpol.2018.03.092

    2. [2]

      Pang, H. W.; Wang, X. X.; Yao, W.; Yu, S. J.; Wang, X. K. Sci. Sinica Chim. 2018, 48, 58.
       

    3. [3]

      Liang, Y.; Gu, P.; Yao, W.; Yu, S.; Wang, J.; Wang, X. Prog. Chem. 2017, 29, 1062.
       

    4. [4]

      Sun, Y.; Wu, Z. Y.; Wang, X.; Ding, C.; Cheng, W.; Yu, S. H.; Wang, X. Environ. Sci. Technol. 2016, 50, 4459.  doi: 10.1021/acs.est.6b00058

    5. [5]

      Chen, H. J.; Huang, S. Y.; Zhang, Z. B.; Liu, Y. H.; Wang, X. K. Acta Chim. Sinica 2017, 75, 560.  doi: 10.11862/CJIC.2017.075
       

    6. [6]

      Yang, D. X.; Wang, X. X.; Song, G.; Zhao, G. X.; Chen, Z.; Yu, S. J.; Gu, P. C.; Wang, H. Q.; Wang, X. K. Sci. Bull. 2017, 62, 1609.  doi: 10.1016/j.scib.2017.10.018

    7. [7]

      Sun, Y.; Ding, C.; Cheng, W.; Wang, X. J. Hazard. Mater. 2014, 280, 399.  doi: 10.1016/j.jhazmat.2014.08.023

    8. [8]

      Ding, C.; Cheng, W.; Sun, Y.; Wang, X. Geochim. Cosmochim. Acta 2015, 165, 86.  doi: 10.1016/j.gca.2015.05.036

    9. [9]

      Yang, S. Y.; Wang, X. X.; Chen, Z. S.; Li, Q.; Wei, B. B.; Wang, X. K. Prog. Chem. 2018, 30, 225.
       

    10. [10]

      Zhang, T.; Gregory, K.; Hammack, R. W.; Vidic, R. D. Environ. Sci. Technol. 2014, 48, 4596.  doi: 10.1021/es405168b

    11. [11]

      Chen, H.; Wang, X.; Li, J.; Wang, X. J. Mater. Chem. A 2015, 3, 6073.  doi: 10.1039/C5TA00299K

    12. [12]

      Nigiz, F. U.; Ozkoc, G.; Hilmioglu, N. D. Mater. Design 2015, 88, 942.  doi: 10.1016/j.matdes.2015.09.055

    13. [13]

      Zhang, S.; Li, J.; Wang, X.; Huang, Y.; Zeng, M.; Xu, J. ACS Appl. Mater. Inter. 2014, 6, 22116.  doi: 10.1021/am505528c

    14. [14]

      Montaña, M.; Camacho, A.; Serrano, I.; Devesa, R.; Matia, L.; Vallés, I. J. Environ. Radioactiv. 2013, 125, 86.  doi: 10.1016/j.jenvrad.2013.01.010

    15. [15]

      Ma, L.; Wang, Q.; Islam, S. M.; Liu, Y.; Ma, S.; Kanatzidis, M. G. J. Am. Chem. Soc. 2016, 138, 2858.  doi: 10.1021/jacs.6b00110

    16. [16]

      Yu, S.; Wang, J.; Song, S.; Sun, K.; Li, J.; Wang, X.; Chen, Z.; Wang, X. Sci. China Chem. 2017, 60, 415.  doi: 10.1007/s11426-016-0420-8

    17. [17]

      Yin, L.; Wang, P.; Wen, T.; Yu, S.; Wang, X.; Hayat, T.; Alsaedi, A.; Wang, X. Environ. Pollut. 2017, 226, 125.  doi: 10.1016/j.envpol.2017.03.078

    18. [18]

      Du, Y.; Wang, J.; Zou, Y.; Yao, W.; Hou, J.; Xia, L.; Peng, A.; Alsaedi, A.; Hayat, T.; Wang, X. Sci. Bull. 2017, 62, 913.  doi: 10.1016/j.scib.2017.05.025

    19. [19]

      Yao, Y.; He, B.; Xu, F.; Chen, X. Chem. Eng. J. 2011, 170, 82.  doi: 10.1016/j.cej.2011.03.031

    20. [20]

      Hu, W.; Lu, S.; Song, W.; Chen, T.; Hayat, T.; Alsaedie, A.; Chen, C.; Liu, H. Appl. Clay Sci. 2018, 157, 121.  doi: 10.1016/j.clay.2018.02.030

    21. [21]

      Yang, D.; Song, S.; Zou, Y.; Wang, X.; Yu, S.; Wen, T.; Wang, H.; Hayat, T.; Alsaedi, A.; Wang, X. Chem. Eng. J. 2017, 323, 143.  doi: 10.1016/j.cej.2017.03.158

    22. [22]

      Wang, X.; Yu, S.; Wu, Y.; Pang, H.; Yu, S.; Chen, Z.; Hou, J.; Alsaedi, A.; Hayat, T.; Wang, S. Chem. Eng. J. 2018, 342, 321.  doi: 10.1016/j.cej.2018.02.102

    23. [23]

      Wu, X. L.; Wang, L.; Chen, C. L.; Xu, A.-W.; Wang, X. K. J. Mater. Chem. 2011, 21, 17353.  doi: 10.1039/c1jm12678d

    24. [24]

      Sun, Z.; Gu, L.; Zheng, J.; Zhang, J.; Wang, L.; Xu, F.; Lin, C. A. Mater. Lett. 2016, 172, 105.  doi: 10.1016/j.matlet.2016.02.151

    25. [25]

      Song, F.; Hu, X. J. Am. Chem. Soc. 2014, 136, 16481.  doi: 10.1021/ja5096733

    26. [26]

      Li, Y.; Shi, L. W.; Liu, Z. S.; Yang, G. Q. Acta Chim. Sinica 2012, 70, 683.  doi: 10.3969/j.issn.0251-0790.2012.04.008
       

    27. [27]

      Zhou, J. Z.; Wu, Y. Y.; Liu, C.; Orpe, A.; Liu, Q.; Xu, Z. P.; Qian, G. R.; Qiao, S. Z. Environ. Sci. Technol. 2010, 44, 8884.  doi: 10.1021/es102884v

    28. [28]

      Zhang, M.; Yao, Q.; Lu, C.; Li, Z.; Wang, W. ACS Appl. Mater. Inter. 2014, 6, 20225.  doi: 10.1021/am505765e

    29. [29]

      Tan, X.; Fang, M.; Ren, X.; Mei, H.; Shao, D.; Wang, X. Environ. Sci. Technol. 2014, 48, 13138.  doi: 10.1021/es503570y

    30. [30]

      Huang, P. P.; Cao, C. Y.; Wei, F.; Sun, Y. B.; Song, W. G. RSC Adv. 2015, 5, 10412.  doi: 10.1039/C4RA15160G

    31. [31]

      Shao, M.; Ning, F.; Zhao, J.; Wei, M.; Evans, D.; Duan, X. J. Am. Chem. Soc. 2012, 134, 1071.  doi: 10.1021/ja2086323

    32. [32]

      Zhou, L.; Shao, M.; Wei, M.; Duan, X. J. Energy Chem. 2017, 26, 194.
       

    33. [33]

      Peng, F.; Luo, T.; Yuan, Y. New J. Chem. 2014, 38, 4427.  doi: 10.1039/C4NJ00548A

    34. [34]

      Li, J.; Fan, Q.; Wu, Y.; Wang, X.; Chen, C.; Tang, Z.; Wang, X. J. Mater. Chem. A 2016, 4, 1737.  doi: 10.1039/C5TA09132B

    35. [35]

      Wang, X.; Pang, H.; Wu, Y.; Yu, S.; Song, G.; Ma, X.; Xu, P. Sci. Sinica Chim. 2018.

    36. [36]

      Gu, P. C.; Zhang, S.; Li, X.; Wang, X. X.; Wen, T.; Jehan, R.; Alsaedi, A.; Hayat, T.; Wang, X. K. Environ. Pollut. 2018, 240, 493.  doi: 10.1016/j.envpol.2018.04.136

    37. [37]

      Koilraj, P.; Kamura, Y.; Sasaki, K. J. Mater. Chem. A 2018, 6, 10008.  doi: 10.1039/C8TA01605D

    38. [38]

      Chen, H.; Che, Z.; Zhao, G.; Zhang, Z.; Xu, C.; Liu, Y.; Chen, J.; Zhuang, L.; Haya, T.; Wang, X. J. Hazard. Mater. 2018, 347, 67.  doi: 10.1016/j.jhazmat.2017.12.062

    39. [39]

      Morel-Desrosiers, N.; Pisson, J.; Israëli, Y.; Taviot-Guého, C.; Besse, J. P.; Morel, J. P. J. Mater. Chem. 2003, 13, 2582.  doi: 10.1039/B303953F

    40. [40]

      Li, J.; Fan, Q.; Wu, Y.; Wang, X.; Chen, C.; Tang, Z.; Wang, X. J. Mater. Chem. A 2016, 4, 1737.  doi: 10.1039/C5TA09132B

    41. [41]

      Wang, J.; Li, Y.; Chen, W.; Peng, J.; Hu, J.; Chen, Z.; Wen, T.; Lu, S.; Chen, Y.; Hayat, T.; Ahmad, B.; Wang, X. Chem. Eng. J. 2016, 309, 445.
       

    42. [42]

      Wang, W.; Zhou, J.; Achari, G.; Yu, J.; Cai, W. Colloid. Surfaces A 2014, 457, 33.  doi: 10.1016/j.colsurfa.2014.05.034

    43. [43]

      Jaiswal, A.; Mani, R.; Banerjee, S.; Gautam, R.; Chattopadhyaya, M. J. Mol. Liq. 2015, 202, 52.  doi: 10.1016/j.molliq.2014.12.004

    44. [44]

      Wu, X.; Du, Y.; An, X.; Xie, X. Catal. Commun. 2014, 50, 44.  doi: 10.1016/j.catcom.2014.02.024

    45. [45]

      Yu, H.; Xu, B.; Bian, L.; Gao, H. J. Syn. Cryst. 2010, 39, 1292.  doi: 10.3969/j.issn.1000-985X.2010.05.040

    46. [46]

      Yu, S.; Wang, X.; Pang, H.; Zhang, R.; Song, W.; Fu, D.; Hayat, T.; Wang, X. Chem. Eng. J. 2017, 333, 343.

    47. [47]

      Yu, S.; Liu, Y.; Ai, Y.; Wang, X.; Zhang, R.; Chen, Z.; Chen, Z.; Zhao, G.; Wang, X. Environ. Pollut. 2018, 242, 1.  doi: 10.1016/j.envpol.2018.06.031

    48. [48]

      Siebecker, M.; Li, W.; Syed, K.; Sparks, D. Nat. Commun. 2014, 5, 5003.  doi: 10.1038/ncomms6003

    49. [49]

      Li, W.; Livi, K.; Xu, W.; Siebecker, M.; Wang, Y.; Phillips, B.; Sparks, D. Environ. Sci. Technol. 2012, 46, 11670.  doi: 10.1021/es3018094

    50. [50]

      Yao, W.; Yu, S.; Wang, J.; Zou, Y.; Lu, S.; Ai, Y.; Alharbi, N. S.; Alsaedi, A.; Hayat, T.; Wang, X. Chem. Eng. J. 2017, 307, 476.  doi: 10.1016/j.cej.2016.08.117

    51. [51]

      Hu, Y.; Wang, X.; Zou, Y.; Wen, T.; Wang, X.; Alsaedi, A.; Hayat, T.; Wang, X. Chem. Eng. J. 2017, 316, 419.  doi: 10.1016/j.cej.2017.01.115

    52. [52]

      Li, Y.; Wang, J.; Li, Z.; Liu, Q.; Liu, J.; Liu, L.; Zhang, X.; Yu, J. Chem. Eng. J. 2013, 218, 295.  doi: 10.1016/j.cej.2012.12.051

    53. [53]

      Asiabi, H.; Yamini, Y.; Shamsayei, M. J. Hazad. Mater. 2017, 339, 239.  doi: 10.1016/j.jhazmat.2017.06.042

    54. [54]

      Wu, X.; Tan, X.; Yang, S.; Wen, T.; Guo, H.; Wang, X.; Xu, A. Water Res. 2013, 47, 4159.  doi: 10.1016/j.watres.2012.11.056

    55. [55]

      Wang, J.; Wang, X.; Tan, L.; Chen, Y.; Hayat, T.; Hu, J.; Alsaedi, A.; Ahmad, B.; Guo, W.; Wang, X. Chem. Eng. J. 2016, 297, 106.  doi: 10.1016/j.cej.2016.04.012

    56. [56]

      Zou, Y.; Wang, X.; Ai, Y.; Liu, Y.; Li, J.; Ji, Y.; Wang, X. Environ. Sci. Technol. 2016, 50, 3658.  doi: 10.1021/acs.est.6b00255

    57. [57]

      Wang, R. X.; Wen, T.; Wu, X. L.; Xu, A. W. RSC Adv. 2014, 4, 21802.  doi: 10.1039/c4ra02212b

    58. [58]

      Zou, Y.; Wang, X.; Wu, F.; Yu, S.; Hu, Y.; Song, W.; Liu, Y.; Wang, H.; Hayat, T.; Wang, X. ACS Sustain. Chem. Eng. 2016, 5, 1173.

    59. [59]

      Wei, M.; Shi, Z.; Evans, D. G.; Duan, X. J. Mater. Chem. 2006, 16, 2102.  doi: 10.1039/b517980g

    60. [60]

      Yu, S.; Wang, X.; Chen, Z.; Wang, J.; Wang, S.; Hayat, T.; Wang, X. J. Hazard. Mater. 2017, 321, 111.  doi: 10.1016/j.jhazmat.2016.09.009

    61. [61]

      Wen, T.; Wu, X.; Tan, X.; Wang, X.; Xu, A. ACS Appl. Mater. Inter. 2013, 5, 3304.  doi: 10.1021/am4003556

    62. [62]

      Qiu, H.; Cui, B.; Li, G.; Yang, J.; Peng, H.; Wang, Y.; Li, N.; Gao, R.; Chang, Z.; Wang, Y. J. Phys. Chem. C 2014, 118, 14929.  doi: 10.1021/jp502820r

    63. [63]

      Cerff, M.; Morweiser, M.; Dillschneider, R.; Michel, A.; Menzel, K.; Posten, C. Bioresource Technol. 2012, 118, 289.  doi: 10.1016/j.biortech.2012.05.020

    64. [64]

      Yang, X. Y.; Gong, Z. Q.; Zheng, Y. J.; Liu, F. L. J. Functional Mater. 2005, 36, 667.  doi: 10.3321/j.issn:1001-9731.2005.05.007

    65. [65]

      Luo, J.; Zhang, G.; Xie, N.; Wang, T.; Gu, Y.; Gong, S.; Wang, C. A. IEEE Photonic. Tech. L. 2015, 27, 998.  doi: 10.1109/LPT.2015.2405079

    66. [66]

      Yang, D.; Wang, X.; Wang, N.; Zhao, G.; Song, G.; Chen, D.; Liang, Y.; Wen, T.; Wang, H.; Hayat, T. J. Clean. Prod. 2018, 172, 2033.  doi: 10.1016/j.jclepro.2017.11.219

    67. [67]

      Sheng, G.; Tang, Y.; Linghu, W.; Wang, L.; Li, J.; Li, H.; Wang, X.; Huang, Y. Appl. Catal. B-Environ. 2016, 192, 268.  doi: 10.1016/j.apcatb.2016.04.001

    68. [68]

      Zou, Y.; Liu, Y.; Wang, X.; Sheng, G.; Wang, S.; Ai, Y.; Ji, Y.; Liu, Y.; Hayat, T.; Wang, X. ACS Sustain. Chem. Eng. 2017, 5, 3583.  doi: 10.1021/acssuschemeng.7b00439

    69. [69]

      Yu, S.; Wang, X.; Tan, X.; Wang, X. Inorg. Chem. Front. 2015, 2, 593.  doi: 10.1039/C4QI00221K

    70. [70]

      Sun, Y.; Yang, S.; Chen, Y.; Ding, C.; Cheng, W.; Wang, X. Environ. Sci. Technol. 2015, 49, 4255.  doi: 10.1021/es505590j

    71. [71]

      Wang, X.; Fan, Q.; Yu, S.; Chen, Z.; Ai, Y.; Sun, Y.; Hobiny, A.; Alsaedi, A.; Wang, X. Chem. Eng. J. 2016, 287, 448.  doi: 10.1016/j.cej.2015.11.066

    72. [72]

      Gu, P. C.; Song, S.; Zhang, S.; Wei, B. B.; Wen, T.; Wang, X. K. Acta Chim. Sinica 2018, 76, 701.  doi: 10.7503/cjcu20170392
       

    73. [73]

      Zhang, C. L.; Li, X.; Chen, Z. S.; Wen, T.; Huang, S. Y.; Hayat, T.; Alsaedi, A.; Wang, X. K. Sci. China Chem. 2018, 61, 281.  doi: 10.1007/s11426-017-9132-7

    74. [74]

      Yao, W.; Wang, X. X.; Liang, Y, ; Yu, S. J.; Gu, P. C.; Sun, Y. B.; Xu, C.; Chen, J.; Hayat, T.; Alsaedi, A.; Wang, X. K. Chem. Eng. J. 2018, 332, 775.  doi: 10.1016/j.cej.2017.09.011

    75. [75]

      Tan, X.; Ren, X.; Chen, C.; Wang, X. Trends. Anal. Chem. 2014, 61, 107.  doi: 10.1016/j.trac.2014.06.010

    76. [76]

      Yao, W.; Wu, Y.; Pang, H.; Wang, X.; Yu, S.; Wang, X. Sci. China Chem. 2018, 61, 812.  doi: 10.1007/s11426-017-9225-5

    77. [77]

      Müller, K.; Foerstendorf, H.; Brendler, V.; Rossberg, A.; Stolze, K.; Gröschel, A. Chem. Geol. 2013, 357, 75.  doi: 10.1016/j.chemgeo.2013.08.033

    78. [78]

      Jin, J.; Sun, K.; Liu, W.; Li, S. W.; Peng, X. Q.; Yang, Y.; Han, L. F.; Du, Z. W.; Wang, X. K. Environ. Pollut. 2018, 236, 745.  doi: 10.1016/j.envpol.2018.02.015

    79. [79]

      Sheng, G. D.; Huang, C. C.; Chen, G. H.; Sheng, J.; Ren, X. M.; Hu, B. W.; Ma, J. Y.; Wang, X. K.; Huang, Y. Y.; Alsaedi, A.; Hayat, T. Environ. Pollut. 2018, 233, 125.  doi: 10.1016/j.envpol.2017.10.047

    80. [80]

      Chen, H. J.; Chen, Z.; Zhao, G. X.; Zhang, Z. B.; Xu, C.; Liu, Y. H.; Chen, J.; Zhuang, L.; Hayat, T.; Wang, X. K. J. Hazard. Mater. 2018, 347, 66.

    81. [81]

      Yu, S.; Yin, L.; Pang, H.; Wu, Y.; Wang, X.; Zhang, P.; Hu, B.; Chen, Z.; Wang, X. Chem. Eng. J. 2018, 352, 360.  doi: 10.1016/j.cej.2018.07.033

    82. [82]

      Zhao, J.; Chen, J.; Xu, S.; Shao, M.; Zhang, Q.; Wei, F.; Ma, J.; Wei, M.; Evans, D.; Duan, X. Adv. Funct. Mater. 2014, 24, 2938.  doi: 10.1002/adfm.v24.20

    83. [83]

      Sheng, G.; Alsaedi, A.; Shammakh, W.; Monaquel, S.; Sheng, J.; Wang, X.; Li, H.; Huang, Y. Carbon 2016, 99, 123.  doi: 10.1016/j.carbon.2015.12.013

    84. [84]

      Zhao, G. X.; Huang, X. B.; Tang, Z. W.; Huang, Q. F.; Niu, F. L.; Wang, X. K. Poly. Chem. 2018, 9, 3562.  doi: 10.1039/C8PY00484F

    85. [85]

      Shao, D.; Li, J.; Tan, X.; Yang, Z.; Okuno, K.; Oya, Y. J. Nucl. Mater. 2015, 457, 118.  doi: 10.1016/j.jnucmat.2014.10.097

    86. [86]

      Liang, Y.; Gu, P. C.; Yao, W.; Yu, S. J.; Wang, J.; Wang, X. K. Prog. Chem. 2017, 29, 1062.
       

    87. [87]

      Xu, H.; Li, G.; Li, J.; Chen, C.; Ren, X. J. Mol. Liq. 2016, 213, 58.  doi: 10.1016/j.molliq.2015.11.022

    88. [88]

      Li, J.; Wang, X. X.; Zhao, G. X.; Chen, C. L.; Chai, Z. F.; Alsaedi, A.; Hayat, T.; Wang, X. K. Chem. Soc. Rev. 2018, 47, 2322.  doi: 10.1039/C7CS00543A

    89. [89]

      Li, X.; Liu, Y.; Zhang, C. L.; Wen, T.; Zhuang, L.; Wang, X. X.; Song, G.; Chen, D. Y.; Ai, Y. J.; Hayat, T.; Wang, X. K. Chem. Eng. J. 2018, 336, 241.  doi: 10.1016/j.cej.2017.11.188

    90. [90]

      Song, W. C.; Wang, X. X.; Chen, Z. S.; Sheng, G. D.; Hayat, T.; Wang, X. K.; Sun, Y. B. Environ. Pollut. 2018, 237, 228.  doi: 10.1016/j.envpol.2018.02.060

    91. [91]

      Yu, S. J.; Wang, X. X.; Yang, S. T.; Sheng, G. D.; Alsaedi, A.; Hayat, T.; Wang, X. K. Sci. China Chem. 2017, 60, 170.  doi: 10.1007/s11426-016-0317-3

    92. [92]

      Sheng, G.; Yang, P.; Tang, Y.; Hu, Q.; Li, H.; Ren, X.; Hu, B.; Wang, X.; Huang, Y. Appl. Catal. B-Environ. 2016, 193, 189.  doi: 10.1016/j.apcatb.2016.04.035

    93. [93]

      Wu, Y. H.; Pang, H. W.; Yao, W.; Wang, X. X.; Yu, S. J.; Yu, Z. M.; Wang, X. K. Sci. Bull. 2018, 63, 831.  doi: 10.1016/j.scib.2018.05.021

  • 加载中
    1. [1]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    2. [2]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    5. [5]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    6. [6]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    7. [7]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    8. [8]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    9. [9]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    10. [10]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    11. [11]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    12. [12]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    13. [13]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    14. [14]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    15. [15]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    16. [16]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    17. [17]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    18. [18]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    19. [19]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    20. [20]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

Metrics
  • PDF Downloads(39)
  • Abstract views(3492)
  • HTML views(546)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return