Citation: Wei Junhao, Cai Wanhao, Cui Shuxun. Single-chain Elasticity of Poly(ethylene glycol) in High Vacuum[J]. Acta Chimica Sinica, ;2019, 77(2): 189-194. doi: 10.6023/A18090400 shu

Single-chain Elasticity of Poly(ethylene glycol) in High Vacuum

  • Corresponding author: Cui Shuxun, cuishuxun@swjtu.edu.cn
  • † These two authors contributed equally to this work
    Supporting information for this article is available free of charge via the Internet at http://sioc-journal.cn.
  • Received Date: 23 September 2018
    Available Online: 1 March 2018

    Fund Project: the National Natural Science Foundation of China 21574106the National Natural Science Foundation of China 21774102Project supported by the National Natural Science Foundation of China (Nos. 21574106, 21774102)

Figures(7)

  • The elasticity of a single polymer chain has been widely investigated in last decades. However, the direct measurement of the single polymer elasticity in an unperturbed state (i.e. inherent elasticity) remains a challenge. The main obstacle in this regard is that most force measurements are carried out in a liquid environment. The single polymer elasticity may be strongly affected by the complex interactions between solvent molecules and polymer such as van der Waals (vdW) forces, hydrogen bonds and/or thermal motions. For instance, the single-chain elasticity of poly(ethylene glycol) (PEG) in water is different from that in nonpolar organic solvents, since hydrogen bonds can be formed between PEG and water molecules. In this study, the single-chain elasticity of PEG is investigated in high vacuum by means of atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS). Solvent molecules and surface adsorbed water are removed thoroughly under high vacuum so that the situation is greatly simplified. PEG is dissolved in DI water to a concentration of 50 μg/mL, which is used for the polymer physisorption on a quartz substrate. Then, the sample is rinsed with abundant DI water to remove the loosely adsorbed polymer and dried by air flow. After that, the AFM chamber is pumped down to ca. 7.0×10-4 Pa to achieve high vacuum, where almost all adsorbed water molecules can be removed from the environment. The results show that PEG maintains its inherent elasticity in high vacuum, which can be well described by an elastic model of a single polymer chain (QM-FRC model) when F>100 pN. In a nonpolar organic solvent (nonane), since there are only vdW forces between solvent molecules and PEG, PEG presents an elasticity virtually identical to that in high vacuum. However, a slight difference can be observed in the low force region (F < 100 pN) in different environments. The long plateau (ca. 45 pN) observed in high vacuum can be attributed to the adsorption/desorption force (mainly vdW forces) of PEG on the substrate. It is greatly anticipated that the method used in the current study can be applied to investigate the inherent elasticity of other polymers in the future.
  • 加载中
    1. [1]

      Zhang, W. K.; Zhang, X. Prog. Polym. Sci. 2003, 28, 1271.  doi: 10.1016/S0079-6700(03)00046-7

    2. [2]

      Neuman, K. C.; Nagy, A. Nat. Methods 2008, 5, 491.  doi: 10.1038/nmeth.1218

    3. [3]

      Li, I. T.; Walker, G. C. J. Am. Chem. Soc. 2010, 132, 6530.  doi: 10.1021/ja101155h

    4. [4]

      Cui, S. X. Acta Polym. Sin. 2016, 1160(in Chinese).
       

    5. [5]

      Zhang, W. K. Acta Polym. Sin. 2011, 913(in Chinese).
       

    6. [6]

      Huang, W. M.; Zhu, Z. S.; Wen, J.; Wang, X.; Qin, M.; Cao, Y.; Ma, H. B.; Wang, W. ACS Nano 2017, 11, 194.  doi: 10.1021/acsnano.6b07119

    7. [7]

      Wang, C.; Shi, W. Q.; Zhang, W. K.; Zhang, X.; Katsumoto, Y.; Ozaki, Y. Nano Lett. 2002, 2, 1169.  doi: 10.1021/nl0256917

    8. [8]

      Radiom, M.; Maroni, P.; Borkovec, M. ACS Macro Lett. 2017, 6, 1052.  doi: 10.1021/acsmacrolett.7b00652

    9. [9]

      Cui, S. X.; Albrecht, C.; Kuhner, F.; Gaub, H. E. J. Am. Chem. Soc. 2006, 128, 6636.  doi: 10.1021/ja0582298

    10. [10]

      Cui, S. X.; Yu, J.; Kuhner, F.; Schulten, K.; Gaub, H. E. J. Am. Chem. Soc. 2007, 129, 14710.  doi: 10.1021/ja074776c

    11. [11]

      Shi, Z. M.; Song, Y.; Lu, F.; Zhou, T. Y.; Zhao, X.; Zhang, W. K.; Li, Z. T. Acta Chim. Sinica 2013, 71, 51(in Chinese).
       

    12. [12]

      Xue, Y. R.; Zhang, W. K. Acta Chim. Sinica 2014, 72, 481(in Chinese).
       

    13. [13]

      Moy, V. T.; Florin, E.; Gaub, H. E. Science 1994, 266, 257.  doi: 10.1126/science.7939660

    14. [14]

      Qian, L.; Bao, Y.; Duan, W. L.; Cui, S. X. ACS Macro Lett. 2018, 7, 672.  doi: 10.1021/acsmacrolett.8b00375

    15. [15]

      Li, Y.; Qin, M.; Li, Y.; Cao, Y.; Wang, W. Langmuir 2014, 30, 4358.  doi: 10.1021/la501189n

    16. [16]

      Liu, C. J.; Jiang, Z. H.; Zhang, Y. H.; Wang, Z. Q.; Zhang, X.; Feng, F. D.; Wang, S. Langmuir 2007, 23, 9140.  doi: 10.1021/la7013804

    17. [17]

      Yu, Y.; Yao, Y.; Wang, L.; Li, Z. Langmuir 2010, 26, 3275.  doi: 10.1021/la9030409

    18. [18]

      Allen, C.; Dos Santos, N.; Gallagher, R.; Chiu, G. N. C.; Shu, Y.; Li, W. M.; Johnstone, S. A.; Janoff, A. S.; Mayer, L. D.; Webb, M. S.; Bally, M. B. Bioscience Rep. 2002, 22, 225.  doi: 10.1023/A:1020186505848

    19. [19]

      Staple, D.; Hanke, F.; Kreuzer, H. J. New J. Phys. 2007, 9, 68.  doi: 10.1088/1367-2630/9/3/068

    20. [20]

      Knop, K.; Hoogenboom, R.; Fischer, H.; Schubert, U. S. Angew. Chem. Int. Ed. 2010, 49, 6288.  doi: 10.1002/anie.200902672

    21. [21]

      Zhu, J. Biomaterials 2010, 31, 4639.  doi: 10.1016/j.biomaterials.2010.02.044

    22. [22]

      Lowe, S.; O'Brien-Simpson, N. M.; Connal, L. A. Polym. Chem. 2015, 6, 198.  doi: 10.1039/C4PY01356E

    23. [23]

      Guo, Z. F. Acta Chim. Sinica 2009, 67, 2755(in Chinese).  doi: 10.3321/j.issn:0567-7351.2009.23.019
       

    24. [24]

      Pan, G. J.; Xiao, N.; Shen, D.; Chen, M. L.; Li, Y.; Lu, K.; Yang, Y.; Meng, X.; Yu, P. Chin. J. Org. Chem. 2017, 37, 133(in Chinese).
       

    25. [25]

      Yang, S. H.; Yan, S. J.; Yang, J.; Zhang, C.; Han, G. Y. Chin. J. Org. Chem. 2018, 38, 425(in Chinese).
       

    26. [26]

      Li, Z. W.; Zhong, J. L.; Chen, N. N.; Xue, B.; Mi, H. Y. Acta Chim. Sinica 2018, 76, 209(in Chinese).
       

    27. [27]

      Zhou, T.; Wang, D. L.; Qian, J. H.; Zhao, W. Chin. J. Org. Chem. 2017, 37, 1548(in Chinese).
       

    28. [28]

      Zhao, J. Y.; Zhu, Y. J.; Wang, Y. Y.; Zhu, J.; Shen, X. Chin. J. Org. Chem. 2017, 37, 203(in Chinese).
       

    29. [29]

      Li, C. T.; Wang, M. M.; Zhu, Q.; Cao, Q. Y. Chin. J. Org. Chem. 2017, 37, 1443(in Chinese).

    30. [30]

      Oesterhelt, F.; Rief, M.; Gaub, H. E. New J. Phys. 1999, 1, 6.  doi: 10.1088/1367-2630/1/1/006

    31. [31]

      Luo, Z. L.; Zhang, B.; Qian, H. J.; Lu, Z. Y.; Cui, S. Nanoscale 2016, 8, 17820.  doi: 10.1039/C6NR05863A

    32. [32]

      Whitesides, G. M.; Mathias, J. P.; Seto, C. T. Science 1991, 254, 1312.  doi: 10.1126/science.1962191

    33. [33]

      Cui, S. X.; Pang, X. C.; Zhang, S.; Yu, Y.; Ma, H.; Zhang, X. Langmuir 2012, 28, 5151.  doi: 10.1021/la300135w

    34. [34]

      Balzer, B. N.; Gallei, M.; Hauf, M. V.; Stallhofer, M.; Wiegleb, L.; Holleitner, A.; Rehahn, M.; Hugel, T. Angew. Chem. Int. Ed. 2013, 52, 6541.  doi: 10.1002/anie.201301255

    35. [35]

      Yang, L. L.; Tan, X. X.; Wang, Z. Q.; Zhang, X. Chem. Rev. 2015, 115, 7196.  doi: 10.1021/cr500633b

    36. [36]

      Cheng, B.; Cui, S. X. Top. Curr. Chem. 2015, 369, 97.  doi: 10.1007/978-3-319-22825-9

    37. [37]

      Yu, Y.; Wang, F.; Shi, W.; Wang, L.; Wang, W.; Shen, J. Chin. Sci. Bull. 2008, 53, 22.  doi: 10.1007/s11434-007-0481-9

    38. [38]

      Hao, Z. L.; Ruan, Z. L.; Yang, X. T.; Cai, Y. T.; Lu, J. C.; Cai, J. M. Acta Chim. Sinica 2018, 76, 585(in Chinese).  doi: 10.3969/j.issn.0253-2409.2018.05.011
       

    39. [39]

      Cai, W. H.; Xiao, C.; Qian, L. M.; Cui, S. X. Nano Res. 2018, DOI:10.1007/s12274-018-2176-8.  doi: 10.1007/s12274-018-2176-8

    40. [40]

      Heymann, B.; Grubmuller, H. Chem. Phys. Lett. 1999, 307, 425.  doi: 10.1016/S0009-2614(99)00531-X

    41. [41]

      Hollabaugh, C. M.; Chessick, J. J. J. Phys. Chem. 1961, 65, 109.  doi: 10.1021/j100819a032

    42. [42]

      Evans, E. B. Biophys. Chem. 1999, 82, 83.  doi: 10.1016/S0301-4622(99)00108-8

    43. [43]

      Evans, E. Annu. Rev. Biophys. Biomol. Struct. 2001, 30, 105.  doi: 10.1146/annurev.biophys.30.1.105

    44. [44]

      Hugel, T.; Seitz, M. Macromol. Rapid Commun. 2001, 22, 989.  doi: 10.1002/(ISSN)1521-3927

    45. [45]

      Zapotoczny, S.; Auletta, T.; de Jong, M.; Schönherr, H.; Huskens, J.; van Veggel, F.; Reinhoudt, D.; Vancso, G. Langmuir 2002, 18, 6988.  doi: 10.1021/la0259095

    46. [46]

      Wang, K. F.; Pang, X. C.; Cui, S. X. Langmuir 2013, 29, 4315.  doi: 10.1021/la400626x

    47. [47]

      Hugel, T.; Rief, M.; Seitz, M.; Gaub, H. E.; Netz, R. R. Phys. Rev. Lett. 2005, 94, 048301.  doi: 10.1103/PhysRevLett.94.048301

    48. [48]

      Janshoff, A.; Neitzert, M.; Oberdorfer, Y.; Fuchs, H. Angew. Chem. Int. Ed. 2000, 39, 3213.

    49. [49]

      Shi, W. Q.; Zhang, Y. H.; Liu, C. J.; Wang, Z. Q.; Zhang, X.; Zhang, Y. H.; Chen, Y. M. Polymer 2006, 47, 2499.  doi: 10.1016/j.polymer.2005.12.089

    50. [50]

      Cui, S. X.; Yu, Y.; Lin, Z. B. Polymer 2009, 50, 930.  doi: 10.1016/j.polymer.2008.12.012

    51. [51]

      Luo, Z. L.; Zhang, A. F.; Chen, Y. M.; Shen, Z. H.; Cui, S. X. Macromolecules 2016, 49, 3559.  doi: 10.1021/acs.macromol.6b00247

    52. [52]

      Zhang, B.; Shi, R.; Duan, W.; Luo, Z.; Lu, Z.-Y.; Cui, S. RSC Adv. 2017, 7, 33883.  doi: 10.1039/C7RA05779B

    53. [53]

      Conti, M.; Bustanji, Y.; Falini, G.; Ferruti, P.; Stefoni, S.; Samori, B. ChemPhysChem 2001, 2, 610.  doi: 10.1002/(ISSN)1439-7641

    54. [54]

      Cui, S. X.; Liu, C. J.; Zhang, X. Nano Lett. 2003, 3, 245.  doi: 10.1021/nl025892a

    55. [55]

      Cui, S. X.; Liu, C. J.; Wang, Z. Q.; Zhang, X. Macromolecules 2004, 37, 946.  doi: 10.1021/ma0353991

    56. [56]

      Liu, K.; Song, Y.; Feng, W.; Liu, N.; Zhang, W.; Zhang, X. J. Am. Chem. Soc. 2011, 133, 3226.  doi: 10.1021/ja108022h

    57. [57]

      Li, H. B.; Linke, W. A.; Oberhauser, A. F.; Carrion-Vazquez, M.; Kerkviliet, J. G.; Lu, H.; Marszalek, P. E.; Fernandez, J. M. Nature 2002, 418, 998.  doi: 10.1038/nature00938

    58. [58]

      van Oss, C. J.; Chaudhury, M. K.; Good, R. J. Chem. Rev. 1988, 88, 927.  doi: 10.1021/cr00088a006

    59. [59]

      Hermann, J.; DiStasio, R. A. J.; Tkatchenko, A. Chem. Rev. 2017, 117, 4714.  doi: 10.1021/acs.chemrev.6b00446

    60. [60]

      Wu, H. X.; Tan, L.; Tang, Z. W.; Yang, M. Y.; Xiao, J. Y.; Liu, C. J.; Zhuo, R. X. ACS Appl. Mater. Interfaces 2015, 7, 7008.  doi: 10.1021/acsami.5b01210

    61. [61]

      Xiao, X. D.; Qian, L. M. Langmuir 2000, 16, 8153.  doi: 10.1021/la000770o

  • 加载中
    1. [1]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    2. [2]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    3. [3]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    4. [4]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    5. [5]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    6. [6]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    7. [7]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    8. [8]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    9. [9]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    10. [10]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    11. [11]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    12. [12]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    13. [13]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    14. [14]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    15. [15]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    16. [16]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    17. [17]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    18. [18]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    19. [19]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    20. [20]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

Metrics
  • PDF Downloads(23)
  • Abstract views(1964)
  • HTML views(165)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return