Citation: Wang Meng, Yan Xin, Wei Dequan, Liang Lanju, Wang Yueping. Application of Au/Ag Composite Nanocages in Surface-enhanced Raman Spectroscopy[J]. Acta Chimica Sinica, ;2019, 77(2): 184-188. doi: 10.6023/A18090393 shu

Application of Au/Ag Composite Nanocages in Surface-enhanced Raman Spectroscopy

  • Corresponding author: Wang Meng, zzxygdwm@163.com Yan Xin, zzxygd@163.com
  • Received Date: 17 September 2018
    Available Online: 1 March 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 61701434, 61735010, 61675147), the Natural Science Foundation of Shandong Province, China (Nos. ZR2017MF005, ZR2018LF001), the Science and Technology Development Planning Project of Zaozhuang (No. 2017GX06)the National Natural Science Foundation of China 61675147the Natural Science Foundation of Shandong Province, China ZR2017MF005the Natural Science Foundation of Shandong Province, China ZR2018LF001the National Natural Science Foundation of China 61735010the National Natural Science Foundation of China 61701434the Science and Technology Development Planning Project of Zaozhuang 2017GX06

Figures(8)

  • Surface-enhanced Raman spectroscopy (SERS) technology, based on noble metal nanostructures as substrate, is a highly sensitive method for the detected substance. When the surface of noble metal with special nanostructure is irradiated by laser, the free electrons on the metal surface will be greatly oscillated. While the frequency of the incident light is close to that of the oscillation, the surface plasmon resonance (SPR) will occur around the noble metal nanostructures material, greatly enhancing the local electric field intensity of the metal surface. The intensity of incident light and the scattering light will be also multiplied. As a result, the Raman scattering signals of molecules adsorbed on the surface of noble metal nanostructures will be effectively enhanced. In this paper, the octahedral Au/Ag composite nanocages were prepared by using NaBH4 reduction-acid etching template method. The prepared octahedral Au/Ag composite nanocages are uniform in shape, with the size of about 600 nm, and there is no residual cuprous oxide template. The Au element is uniformly distributed on the Ag nanocages with the mass fraction about 16.8%. Compared with that of Ag nanocages, the UV-vis absorption peak of the Au/Ag composite nanocages is red-shifted. More importantly, the synergistical action of Au and Ag element endow the Au/Ag composite nanocages with ultra-high SERS sensitivity and reproducibility. The trace detection of R6G at an ultralow concentration of 5×10-14 mol/L can be attributed to the high electromagnetic field intensity generated by the surface plasmon resonance, which was certificated by the finite difference time domain (FDTD) simulation method. Besides, the addition of the Au element provided the Au/Ag composite nanocages with excellent oxidation resistance and chemical stability. The excellent SERS performance can be kept even after soaking in 1% H2O2 solution for 3 h. The octahedral Au/Ag composite nanocages are a promising SERS substrate with high sensitivity and stability.
  • 加载中
    1. [1]

      Tanaka, A.; Hashimoto, K.; Ohtanl, B.; Kominami, H. Chem. Commun. 2013, 49, 3419.  doi: 10.1039/c3cc41122b

    2. [2]

      Eom, H.; Jung, J. Y.; Shin, Y.; Kim, S.; Choi, J. H.; Lee, E.; Jeong, J. H.; Park, I. Nanoscale 2014, 6, 226.  doi: 10.1039/C3NR04388F

    3. [3]

      Kang, M.; Kim, J. J.; Oh, Y. J.; Park, S. G.; Jeong, K. H. Adv. Mater. 2014, 26, 4510.  doi: 10.1002/adma.v26.26

    4. [4]

      Im, H.; Bantz, K. C.; Lee, S. H.; Johnson, T. W.; Haynes, C. L.; Oh, S. H. Adv. Mater. 2013, 25, 2678.  doi: 10.1002/adma.v25.19

    5. [5]

      Yang, N.; You, T. T.; Gao, Y. K.; Zhang, C. M.; Yin, P. G. Spectrochim. Acta A:Mol. Biomol. Spectrosc. 2018, 202, 376.  doi: 10.1016/j.saa.2018.05.068

    6. [6]

      Indrasekara, A. S. D. S.; Meyers, S.; Shubeita, S.; Feldman, L. C.; Gustafsson, T.; Fabris, L. Nanoscale 2014, 6, 8891.  doi: 10.1039/C4NR02513J

    7. [7]

      Zhao, H.; Hasi, W.; Bao, L.; Han, S. Q. A. W.; Sha, X. Y.; Sun, J.; Lou, X. T.; Lin, D. Y.; Lv, Z. W. Chin. J. Chem. 2017, 35, 1522.  doi: 10.1002/cjoc.v35.10

    8. [8]

      Jiao, C. L.; Wang, W.; Liu, J.; Yuan, Y. X.; Xu, M. M.; Yao, J. L. Acta Chim. Sinica 2018, 76, 526.
       

    9. [9]

      Gao, Z. G.; Zheng, T. T.; Deng, J.; Li, X. R.; Qu, Y. Y.; Lu, Y.; Liu, T. J.; Luo, Y.; Zhao, W. J.; Lin, B. C. Acta Chim. Sinica 2017, 75, 355.  doi: 10.7503/cjcu20160572
       

    10. [10]

      Qi, J.; Motwani, P.; Gheewala, M.; Brennan, C.; Wolfe, J. C.; Shih, W. C. Nanoscale 2013, 5, 4105.  doi: 10.1039/c2nr33242f

    11. [11]

      Fan, M. K.; Lai, F. J.; Chou, H. L.; Lu, W. T.; Hwang, B. J.; Brolo, A. G. Chem. Sci. 2013, 4, 509.  doi: 10.1039/C2SC21191B

    12. [12]

      Niu, W. X.; Chua, Y. A. A.; Zhang, W. Q.; Huang, H. J.; Lu, X. M. J. Am. Chem. Soc. 2015, 137, 10460.  doi: 10.1021/jacs.5b05321

    13. [13]

      Perez-Mayen, L.; Oliva, J.; Torres-Castro, A.; De la Rosa, E. Nanoscale 2015, 7, 10249.  doi: 10.1039/C5NR02004B

    14. [14]

      Yang, Y.; Zhang, Q.; Fu, Z. W.; Qin, D. ACS Appl. Mater. Interfaces 2014, 6, 3750.  doi: 10.1021/am500506j

    15. [15]

      Yang, N.; You, T. T.; Gao, Y. K.; Zhang, C. M.; Yin, P. G. J. Agric. Food Chem. 2018, 66, 6889.  doi: 10.1021/acs.jafc.8b01702

    16. [16]

      Saute, B.; Premasiri, R.; Ziegler, L.; Narayanan, R. Analyst 2012, 137, 5082.  doi: 10.1039/c2an36047k

    17. [17]

      Pande, S.; Ghosh, S. K.; Praharaj, S.; Panigrahi, S.; Basu, S.; Jana, S.; Pal, A.; Tsukuda, T.; Pal, T. J. Phys. Chem. C 2007, 111, 10806.  doi: 10.1021/jp0702393

    18. [18]

      Gunawidjaja, R.; Kharlampieva, E.; Choi, I.; Tsukruk, W. Small 2009, 5, 2460.  doi: 10.1002/smll.v5:21

    19. [19]

      Jakab, A.; Rosman, C.; Khalavka, Y.; Becker, J.; Trugler, A.; Hohenester, U.; Sönnichsen, C. ACS Nano 2011, 5, 6880.  doi: 10.1021/nn200877b

    20. [20]

      Zhang, C. J.; Zhang, J.; Lin, J. R.; Jin, Q.; Xu, M. M.; Yao, J. L. Acta Chim. Sinica 2017, 75, 860.
       

    21. [21]

      Su, Y. Y.; Peng, T. H.; Xing, F. F.; Li, D.; Fan, C. H. Acta Chim. Sinica 2017, 75, 1036.
       

    22. [22]

      Han, Q. Y.; Zhang, C. Y.; Gao, W.; Han, Z. H.; Liu, T. Z.; Li, C. X.; Wang, Z. J.; He, E. J.; Zheng, H. R. Sens. Actuators B Chem. 2016, 231, 609.  doi: 10.1016/j.snb.2016.03.068

    23. [23]

      Rycenga, M.; Xia, X. H.; Moran, C. H.; Zhou, F.; Qin, D.; Li, Z. Y.; Xia, Y. N. Angew. Chem., Int. Ed. 2011, 50, 5473.  doi: 10.1002/anie.201101632

    24. [24]

      Zheng, X.; Chen, Y. H.; Chen, Y.; Bi, N.; Qi, H. B.; Qin, M. H.; Song, D.; Zhang, H. Q.; Tian, Y. J. Raman Spectrosc. 2012, 43, 1374.  doi: 10.1002/jrs.v43.10

    25. [25]

      Wei, X. Y.; Fan, Q. K.; Liu, H. P.; Bai, Y. C.; Zhang, L.; Zheng, H. Q.; Yin, Y. D.; Gao, C. B. Nanoscale 2016, 8, 15689.  doi: 10.1039/C6NR04866H

    26. [26]

      Hsiao, W. H.; Chen, H. Y.; Yang, Y. C.; Chen, Y. L.; Lee, C. Y.; Chiu, H. T. ACS Appl. Mater. Interfaces 2011, 3, 3280.  doi: 10.1021/am2007239

    27. [27]

      Liu, K.; Bai, Y. C.; Zhang, L.; Yang, Z. B.; Fan, Q. K.; Zheng, H. Q.; Yin, Y. D.; Gao, C. B. Nano Lett. 2016, 16, 3675.  doi: 10.1021/acs.nanolett.6b00868

    28. [28]

      Zhu, C. H.; Meng, G. W.; Zheng, P.; Huang, Q.; Li, Z. B.; Hu, X. Y.; Wang, X. J.; Huang, Z. L.; Li, F. D.; Wu, N. Q. Adv. Mater. 2016, 28, 4871.  doi: 10.1002/adma.v28.24

    29. [29]

      Gao, Y. K.; Yang, N.; You, T. T.; Jiang, L.; Yin, P. G. RSC Adv. 2017, 7, 4541.  doi: 10.1039/C6RA27799C

    30. [30]

      Shi, H. Z.; Zhang, L. D.; Cai, W. P. J. Appl. Phys. 2000, 87, 1572.  doi: 10.1063/1.372053

    31. [31]

      Gaudry, M.; Lerme, J.; Cottancin, E.; Pellarin, M.; Vialle, J. L.; Broyer, M.; Prevel, B.; Treilleux, M.; Melinon, P. Phys. Rev. B 2001, 64, 085407.  doi: 10.1103/PhysRevB.64.085407

    32. [32]

      Upender, G.; Satyavathi, R.; Raju, B.; Alee, K. S.; Rao, D. N.; Bansal, C. Chem. Phys. Lett. 2011, 511, 309.  doi: 10.1016/j.cplett.2011.06.039

    33. [33]

      Li, W. Y.; Camargo, P. H. C.; Lu, X. M.; Xia, Y. N. Nano Lett. 2009, 9, 485.  doi: 10.1021/nl803621x

  • 加载中
    1. [1]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    2. [2]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    3. [3]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    4. [4]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    5. [5]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    6. [6]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    7. [7]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    8. [8]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    9. [9]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    10. [10]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    11. [11]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    12. [12]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    13. [13]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    14. [14]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    15. [15]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    16. [16]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    17. [17]

      Yujia Luo Yunpeng Qi Huiping Xing Yuhu Li . The Use of Viscosity Method for Predicting the Life Expectancy of Xuan Paper-based Heritage Objects. University Chemistry, 2024, 39(8): 290-294. doi: 10.3866/PKU.DXHX202401037

    18. [18]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    19. [19]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    20. [20]

      Bingliang Li Yuying Han Dianyang Li Dandan Liu Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070

Metrics
  • PDF Downloads(9)
  • Abstract views(1939)
  • HTML views(265)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return