Citation: He Tong, Yang Xiaofeng, Chen Yuzhe, Tong Zhenhe, Wu Lizhu. Triplet-Triplet Annihilation Upconversion Based on Silica Nanoparticles[J]. Acta Chimica Sinica, ;2019, 77(1): 41-46. doi: 10.6023/A18090374 shu

Triplet-Triplet Annihilation Upconversion Based on Silica Nanoparticles

  • Corresponding author: Yang Xiaofeng, xiaofengyang2008@126.com Chen Yuzhe, chenyuzhe@mail.ipc.ac.cn Wu Lizhu, lzwu@mail.ipc.ac.cn
  • Received Date: 6 September 2018
    Available Online: 23 January 2018

    Fund Project: the National Natural Science Foundation of China 21474124the National Natural Science Foundation of China 21871280Ministry of Science and Technology and Chinese Academy of Sciences Strategic Pilot Science and Technology Project (Class B) XDB17000000Ministry of Science and Technology and Chinese Academy of Sciences Strategic Pilot Science and Technology Project (Class B) 21474124Ministry of Science and Technology and Chinese Academy of Sciences Strategic Pilot Science and Technology Project (Class B) 21871280Project supported by the National Natural Science Foundation of China (Nos. 21871280, 21474124), Ministry of Science and Technology (Nos. 2014CB239402 and 2017YFA0206903) and Chinese Academy of Sciences Strategic Pilot Science and Technology Project (Class B) (XDB17000000)

Figures(9)

  • Photon upconversion based on triplet-triplet annihilation (TTA) composed of organic photosensitizer and emitter, has attracted widespread attention due to its unique photophysical properties and enormous applications in photovoltaic cells, photocatalysis, bio-imaging, and photodynamic therapy. Particularly, in biological systems, long-wavelength excitation light can efficiently reduce the interference of background fluorescence and increase the penetration depth of biological tissue, thereby avoiding the use of high-energy excitation light and reducing the damage to biological samples. However, most of the upconversion dyes based on TTA mechanism are water-insoluble organic compounds, which greatly limits their application in the biological field. Herein we synthesized a TTA upconversion system based on silica nanoparticles, which can achieve upconversion emission in water. Specifically, the photosensitizer (fluorinated tetraphenylporphyrin platinum) and the emitter (siloxane derivatized 9, 10-diphenylanthracene) for photon upconversion were designed and synthesized, whose upconversion performance in dichloromethane solution was firstly studied by UV-Vis spectrophotometer and fluorescence spectrometer. Clear blue upconversion emission from emitter could be observed when the photosensitizer was excited by 532 nm laser. The triplet energy transfer efficiency between photosensitizer and emitter is 60%. The optimal ratio of photosensitizer to emitter was 1:40. Based on this ratio, the stable upconversion silica nanoparticles with uniform size in water were constructed by micellar template method. The average diameter characterized by transmission electron microscopy (TEM) is 15.5 nm and the hydration diameter characterized by dynamic light scattering (DLS) is 22.5 nm. When the 532 nm laser is used as the excitation source, the upconversion emission in water was achieved. Their upconversion luminescence lifetime and quantum yield are 12 μs and 0.8%, respectively. Finally, the upconversion mechanism in silica nanoparticles was studied. The upconversion intensities in silica nanoparticles show quadratic and first-order dependences on the incident intensity in the low and high excitation intensity ranges respectively, proving a triplet-triplet annihilation mechanism.
  • 加载中
    1. [1]

    2. [2]

      Parker, C. A.; Hatchard, C. G. Proc. R. Soc. London, Ser. A 1962, 269, 574.  doi: 10.1098/rspa.1962.0197

    3. [3]

      Parker, C. A. Proc. R. Soc. London, Ser. A 1963, 276, 125.  doi: 10.1098/rspa.1963.0197

    4. [4]

    5. [5]

      Khnayzer, R. S.; Blumhoff, J.; Harrington, J. A.; Haefele, A.; Deng, F.; Castellano, F. Chem. Commun. 2012, 48, 209.

    6. [6]

      (a) Wang, Z. J.; Zhao, J. Z.; Barbon, A.; Toffoletti, A.; Liu, Y.; An, Y. L.; Xu, L.; Karatay, A.; Yaglioglu, H. G.; Yildiz, E. A.; Hayvali, M. J. Am. Chem. Soc. 2017, 139, 23. (b) Cui, X. N.; Zhao, J. Z.; Zhou, Y. H.; Ma, J.; Zhao, Y. L. J. Am. Chem. Soc. 2014, 136, 9256. (c) Zhang, C. S.; Zhao, J. Z.; Wu, S.; Wang, Z. L.; Wu, W. H.; Ma, J.; Guo, S.; Huang, L. J. Am. Chem. Soc. 2013, 135, 10566. (d) Wu, W. H.; Guo, S.; Zhao, J. Z. Sci. China Chem. 2012, 42, 1381. (伍晚花, 郭颂, 赵建章, 中国科学: 化学, 2012, 42, 1381.)(e) Ma, L. H.; Guo, S.; Zhao, J. Z.; Guo, H. M. Chin. Sci. Bull. 2014, 59, 1655. (马丽花, 郭颂, 赵建章, 郭慧敏, 科学通报, 2014, 59, 1655.)(f) Wan, S. G.; Lin, J. X.; Su, H. M.; Dai, J. F.; Lu, W. Chem. Commun. 2018, 54, 3907.

    7. [7]

      Khnayzer, R. S.; Blumhoff, J.; Harrington, J. A.; Haefele, A.; Deng, F.; Castellano, F. Chem. Commun. 2012, 48, 209.  doi: 10.1039/C1CC16015J

    8. [8]

      Kwon, O. S.; Kim, J. H.; Cho, J. K.; Kim, J. H. ACS Appl. Mater. Interfaces 2017, 7, 318.
       

    9. [9]

      Guo, C.; Li, M. G. Acta Chim. Sinica 2014, 72, 215.  doi: 10.7503/cjcu20130931
       

    10. [10]

      Wang, C.; Cheng, L.; Liu, Z. Theranostics 2013, 3, 317.  doi: 10.7150/thno.5284

    11. [11]

      Wohnhaas, C.; Mailänder, V.; Dröge, M.; Filatov, M. A.; Busko, D.; Avlasevich, Y.; Baluschev, S.; Miteva, T.; Landfester, K.; Turshatov, A. Macromol. Biosci. 2013, 13, 1422.  doi: 10.1002/mabi.201300149

    12. [12]

      Haase, M.; Schäfer, H. Angew. Chem., Int. Ed. 2011, 50, 5808.  doi: 10.1002/anie.v50.26

    13. [13]

      Tanaka, K.; Inafuku, K.; Chujo, Y. Chem. Commun. 2010, 46, 4378.  doi: 10.1039/c0cc00266f

    14. [14]

      Turshatov, A.; Busko, D.; Baluschev, S.; Miteva, T.; Landfester, K. New J. Phys. 2011, 13, 083035.  doi: 10.1088/1367-2630/13/8/083035

    15. [15]

      Monguzzi, A.; Frigoli, M.; Larpent, C.; Tubino, R.; Meinardi, F. Adv. Funct. Mater. 2012, 22, 139.  doi: 10.1002/adfm.201101709

    16. [16]

      Huo, Q. S.; Liu, J.; Wang, L. Q.; Jiang, Y. B. J. Am. Chem. Soc. 2006, 128, 6447.  doi: 10.1021/ja060367p

    17. [17]

      Sun, Y. H.; Zha, L. G. H.; Zhang, J. L.; Guan, C. X.; Zheng, L.; Li, W.; Qiao, J. J. Acta Chim. Sinica 2011, 69, 967.
       

    18. [18]

      (a) Petrizza, L.; Collot, M.; Richert, L.; Mely, Y.; Prodib, L.; Klymchenko, A. S. RSC Adv. 2016, 6, 104164. (b) Wang, C.; Chen, Y. Z.; Wu, D. Y. Chem. J. Chin. Univ. 2018, 39, 917. (王畅, 陈玉哲, 吴大勇, 高等学校化学学报, Chem. J. Chin. Univ. 2018, 39, 917.

    19. [19]

      Kwon, O. S.; Song, H. S.; Conde, J.; Kim, H. I.; Artzi, N.; Kim, J. H. ACS Nano 2016, 10, 1512.  doi: 10.1021/acsnano.5b07075

    20. [20]

      Genovese, D.; Bonacchi, S.; Juris, R.; Montalti, M.; Prodi, L.; Rampazzo, E.; Zaccheroni, N. Angew. Chem., Int. Ed. 2013, 52, 5965.  doi: 10.1002/anie.201704430

    21. [21]

      Stöber, W.; Fink, A.; Bohn, E. J. Colloid Interface Sci. 1968, 26, 69.
       

    22. [22]

      Genovese, D.; Bonacchi, S.; Juris, R.; Montalti, M.; Prodi, L.; Rampazzo, E.; Zaccheroni, N. Angew. Chem., Int. Ed. 2013, 52, 5965.  doi: 10.1002/anie.201301155

  • 加载中
    1. [1]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    2. [2]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    3. [3]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    4. [4]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    5. [5]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    6. [6]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    7. [7]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    8. [8]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    9. [9]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    10. [10]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    11. [11]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    12. [12]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    13. [13]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    14. [14]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    15. [15]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    16. [16]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    17. [17]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    18. [18]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    19. [19]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    20. [20]

      Yecang Tang Shan Ling Zhen Fang . Exploration of a Hierarchical and Integration-Oriented Talent Training Model in the Demonstration Center for Experimental Chemistry Education. University Chemistry, 2024, 39(7): 188-192. doi: 10.12461/PKU.DXHX202405107

Metrics
  • PDF Downloads(20)
  • Abstract views(1384)
  • HTML views(267)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return