Citation: Liu Yucan, Su Miaomiao, Zhang Yan, Duan Jinming, Li Wei. Influence Rule of Organic Solvents Methanol from Sample Preparation on Degradation Rate and Mechanism of Atrazine in UV-based Oxidation Processes[J]. Acta Chimica Sinica, ;2019, 77(1): 72-83. doi: 10.6023/A18090365 shu

Influence Rule of Organic Solvents Methanol from Sample Preparation on Degradation Rate and Mechanism of Atrazine in UV-based Oxidation Processes

  • Corresponding author: Liu Yucan, liuyucanfendou@163.com
  • Received Date: 4 September 2018
    Available Online: 25 January 2018

    Fund Project: Project supported by the Natural Science Foundation of Shandong Province (No. ZR2017BEE016), the National Natural Science Foundation of China (No. 51308437) and the Science Fund of Yantai University (No. TM17B19)the National Natural Science Foundation of China 51308437the Science Fund of Yantai University TM17B19the Natural Science Foundation of Shandong Province ZR2017BEE016

Figures(13)

  • Stock solutions of organic micro-pollutants with low water solubility are commonly prepared using organic solvents in laboratory studies on degradation of these organic compounds. Dilution of the stock solution unavoidably introduces a small amount of organic solvent into the experimental working solutions. This could possibly affect the estimation of the degradation rate constants (kobs) of these organic micro-pollutants by UV-based oxidation processes. To demonstrate this problem, the effect of organic solvents on the degradation rate of atrazine (ATZ) has been investigated in the sole-UV, UV/H2O2 and UV/TiO2 process at the concentration levels that would likely be derived from stock solutions. Organic solvent methanol (MeOH) commonly used for stock-solution preparation was selected. The degradation of ATZ was investigated under ultraviolet irradiation (253.7 nm). The reaction was conducted in an annular photochemical reactor, in the axis of which a low-pressure mercury lamp (LPUV) was installed. The photon flux into the solution from the LPUV was determined to be at 1.18×10-7 Einstein/s. A magnetic stirrer was located at the bottom of the reactor to maintain homogeneity of the reacting solution. A thermostatic water recirculation system was used to control the solution temperature at 20±0.5℃. Prior to irradiation, the mercury lamp was ignited for 30 min for a stable output. UV photo-oxidation was performed with ultrapure water containing an initial 0.1 or 5 mg/L ATZ and different volume ratio of methanol. Solution pH value of 4.0, 7.0 and 10.0 was buffered using phosphate or borate. Determination of ATZ using ultra-performance liquid chromatography-electrospray-triple quadrupole mass spectrometry coupled with an ACQUITYTM UPLC BEH C8 separation column. The results show that the reaction rate of ATZ in UV/TiO2 process could be affected significantly by the presence of MeOH, even at a concentration well below that possibly introduced during the preparation of working solutions from the organic solvent stock solutions (e.g. 0.01%, V/V). With the increase of MeOH concentration, the kobs of ATZ in UV/TiO2 process gradually decreases. The organic solvents having a stronger reaction activity with·OH tend to impose a greater effect on the kobs of ATZ. However, MeOH does not affect kobs of photolysis of ATZ in sole-UV process, and a small effect for the kobs of ATZ in UV/H2O2 process. In addition, MeOH in the reaction system does not affect the speciation and degradation pathway of ATZ under different UV-based oxidation processes. The findings here provide a plausible explanation for the discrepancies in the reaction rate constants reported in the literature for some organic micro-pollutants during the UV-based oxidation processes.
  • 加载中
    1. [1]

      Gibson, D. T. Aquatic Pollutants: Transformation and Biological Effects, Elsevier, 2015.
       

    2. [2]

       

    3. [3]

      Kong, L.; Kadokami, K.; Duong, H. T.; Chau, H. T. C. Chemosphere 2016, 165, 221.  doi: 10.1016/j.chemosphere.2016.08.084

    4. [4]

      Zietzschmann, F.; Altmann, J.; Ruhl, A. S.; Dünnbier, U.; Dommisch, I.; Sperlich, A.; Meinel, F.; Jekel, M. Water Res. 2014, 56, 48.  doi: 10.1016/j.watres.2014.02.044

    5. [5]

      Reddy, P. V. L.; Kim, K.-H. J. Hazard. Mater. 2015, 285, 325.  doi: 10.1016/j.jhazmat.2014.11.036

    6. [6]

      Rozas, O.; Vidal, C.; Baeza, C.; Jardim, W. F.; Rossner, A.; Mansilla, H. D. Water Res. 2016, 98, 109.  doi: 10.1016/j.watres.2016.03.069

    7. [7]

      Sanches, S.; Crespo, M. T. B.; Pereira, V. J. Water Res. 2010, 44, 1809.  doi: 10.1016/j.watres.2009.12.001

    8. [8]

      Choi, H. J.; Kim, D.; Lee, T. J. J. Environ. Sci. Health B 2013, 48, 927.  doi: 10.1080/03601234.2013.816587

    9. [9]

      Rastogi, A.; Al-Abed, S. R.; Dionysiou, D. D. Appl. Catal. B 2009, 85, 171.  doi: 10.1016/j.apcatb.2008.07.010

    10. [10]

      Wang, D.-H.; Zhang, L.; Lou, S.-Z. Acta Chim. Sinica 2017, 75, 22.
       

    11. [11]

      Ruan, L.-H.; Chen, C.-X.; Zhang, X.-X.; Sun, J. Chin. J. Org. Chem. 2018, 38, DOI:10.6023/cjoc201806009 (in Chinese).  doi: 10.6023/cjoc201806009

    12. [12]

      Challis, J. K.; Cuscito, L. D.; Joudan, S.; Luong, K. H.; Knapp, C. W.; Hanson, M. L.; Wong, C. S. Sci. Total Environ. 2018, 635, 803.  doi: 10.1016/j.scitotenv.2018.04.128

    13. [13]

      Yang, Y.; Cao, H.; Peng, P.; Bo, H. J. Hazard. Mater. 2014, 279, 444.  doi: 10.1016/j.jhazmat.2014.07.035

    14. [14]

      Barchanska1, H.; Sajdak, M.; Kornelia, S.; Swientek1, A.; Tworek1, M.; Kurek, M. Environ. Sci. Pollut. Res. 2017, 24, 644.  doi: 10.1007/s11356-016-7798-3

    15. [15]

      Singh, S.; Kumar, V.; Chauhan, A.; Datta, S.; Wani, A. B.; Singh, N.; Singh, J. Environ. Chem. Lett. 2018, 16, 211.  doi: 10.1007/s10311-017-0665-8

    16. [16]

      United States Environmental Protection Agency, National Primary Drinking Water Regulations (Total Coliforms (Including Fecal Coliforms and E. Coli)), 2009, p. 54.

    17. [17]

      Directive 2000/60/EC, Directive W F. EU Water Framework Directive, 2000.

    18. [18]

      State Standard of the People's Republic of China, Standards for Drinking Water Quality GB 5749-2006, 2006.

    19. [19]

      Moreira, A. J.; Borges, A. C.; Gouvea, L. F. C.; Macleod, T. C. O.; Freschi, G. P. G. J. Photoch. Photobio. A 2017, 347, 160.  doi: 10.1016/j.jphotochem.2017.07.022

    20. [20]

      Chen, C.; Yang, S.; Guo, Y.; Sun, C.; Gu, C.; Xu, B. J. Hazard. Mater. 2009, 172, 675.  doi: 10.1016/j.jhazmat.2009.07.050

    21. [21]

      Lekkerkerker-Teunissen, K.; Benotti, M. J.; Snyder, S. A.; Dijk, H. C. V. Sep. Purif. Technol. 2012, 96, 33.  doi: 10.1016/j.seppur.2012.04.018

    22. [22]

      Fang, T.; Hofmanna, R.; Bolton, J. J. Photoch. Photobio. A 2018, 357, 81.  doi: 10.1016/j.jphotochem.2018.02.025

    23. [23]

      Abramović, B. F.; Banić, N. D.; Šojić, D. V. Chemosphere 2010, 81, 114.  doi: 10.1016/j.chemosphere.2010.07.016

    24. [24]

      Vione, D.; Falletti, G.; Maurino, V.; Minero, C.; Pelizzetti, E.; Malandrino, M., Ajassa, R.; Olariu, R.-I.; Arsene, C. Environ. Sci. Technol. 2006, 40, 3775.  doi: 10.1021/es052206b

    25. [25]

      Zhou, H.; Lian, L.; Yan, S.; Song, W. Water Res. 2017, 112, 120.  doi: 10.1016/j.watres.2017.01.048

    26. [26]

      Khan, J. A.; He, X.; Shah, N. S.; Khan, H. M.; Hapeshi, E.; Fatta-Kassinos, D.; Dionysiou, D. D. Chem. Eng. J. 2014, 252, 393.  doi: 10.1016/j.cej.2014.04.104

    27. [27]

      Yola, M. L.; Eren, T.; Atar, N. Chem. Eng. J. 2014, 250, 288.  doi: 10.1016/j.cej.2014.03.116

    28. [28]

      Naeem, K.; Ouyang, F. J. Environ. Sci.-China 2013, 25, 399.  doi: 10.1016/S1001-0742(12)60055-2

    29. [29]

      Li, W.; Wu, R.; Duan, J.; Saint, C. P.; Mulcahy, D. Chem. Eng. J. 2016, 313, 801.
       

    30. [30]

      Khan, J. A.; He, X.; Khan, H. M.; Shah, N. S.; Dionysiou, D. D. Chem. Eng. J. 2013, 218, 376.  doi: 10.1016/j.cej.2012.12.055

    31. [31]

      United States Environmental Protection Agency, Determination of Triazine Pesticides and Their Degradates in Drinking Water by Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometry (LC/ESI-MS/MS), Method 536, 2007.

    32. [32]

      Khan, J. A.; He, X.; Shah, N. S.; Sayed, M.; Khan, H. M.; Dionysiou, D. D. Chem. Eng. J. 2017, 325, 485.  doi: 10.1016/j.cej.2017.05.011

    33. [33]

      Meng, C.; Wang, H.; Wu, Y.-B.; Fu, X.-Z.; Yuan, R.-S. Acta Chim. Sinica 2017, 75, 508 (in Chinese).
       

    34. [34]

      Du, P.-J.; Su, T.-M.; Luo, X.; Zhou, X.-T.; Qin, Z.-Z.; Ji, H.-B.; Chen, J.-H. Chinese J. Chem. 2018, 36, 538.  doi: 10.1002/cjoc.v36.6

    35. [35]

      Zhang, X.-W.; Li, P.-F.; Yuan, Y.; Jia, X.-D. Chin. J. Org. Chem. 2014, 38, 2435 (in Chinese).

    36. [36]

      Cui, S.-Z.; Yang, H.-P.; Sun, H.-H.; Nie, K.; Wu, J.-M. Acta Chim. Sinica 2016, 74, 995 (in Chinese).
       

    37. [37]

      Hu, E.; Cheng, H. Water Res. 2014, 57, 8.  doi: 10.1016/j.watres.2014.03.015

    38. [38]

      Liu, Y.-C.; Duan, J.-M.; Li, W. Acta Chim. Sinica 2015, 73, 1196 (in Chinese).
       

    39. [39]

      Li, X.; Ma, J.; Liu, G.; Fang, J.; Yue, S.; Guan, Y.; Chen, L.; Liu, X. Environ. Sci. Technol. 2012, 46, 7342.  doi: 10.1021/es3008535

  • 加载中
    1. [1]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    2. [2]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    3. [3]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    4. [4]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    5. [5]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    6. [6]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    7. [7]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    8. [8]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    9. [9]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    10. [10]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    11. [11]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    12. [12]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    13. [13]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    14. [14]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    15. [15]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    16. [16]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    17. [17]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    18. [18]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    19. [19]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    20. [20]

      Jian Jin Jing Cheng Xueping Yang . Integration Practice of Organic Chemistry Experiment and Safety Education: Taking the Synthesis of Triphenylmethanol as an Example. University Chemistry, 2024, 39(3): 345-350. doi: 10.3866/PKU.DXHX202309010

Metrics
  • PDF Downloads(11)
  • Abstract views(1414)
  • HTML views(199)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return