Citation: Cui Lirui, Zhang Jin, Sun Yiyan, Lu Shanfu, Xiang Yan. Effect of Addition of Carbon Nanotubes on the Performance of a Low Pt Loading Membrane-Electrode-Assembly in Proton Exchange Membrane Fuel Cells[J]. Acta Chimica Sinica, ;2019, 77(1): 47-53. doi: 10.6023/A18080344 shu

Effect of Addition of Carbon Nanotubes on the Performance of a Low Pt Loading Membrane-Electrode-Assembly in Proton Exchange Membrane Fuel Cells

  • Corresponding author: Lu Shanfu, lusf@buaa.edu.cn Xiang Yan, xiangy@buaa.edu.cn
  • Received Date: 21 August 2018
    Available Online: 30 January 2018

    Fund Project: the Key Research and Development Program of Beijing Z171100000917011the National Natural Science Foundation of China and the Fundamental Research Funds for the Central Universities 21576007the National Natural Science Foundation of China and the Fundamental Research Funds for the Central Universities 21722601Project supported by the Key Research and Development Program of Beijing (No. Z171100000917011), the National Natural Science Foundation of China (Nos. 21722601, 21576007) and the Fundamental Research Funds for the Central Universities

Figures(6)

  • The cell performance and Pt utilization of low-Pt proton exchange membrane fuel cells (PEMFCs) have been significantly improved through incorporating carbon materials into the conventional Pt/C catalytic layer of the membrane electrode assembly (MEA). However, the introduction methods for the carbon materials have not been investigated. In this work, carbon nanotube (CNT) as an additive was added to the low-Pt loading catalytic layer (0.1 mgPt·cm-2) by two methods:a separated CNT layer deposited on the top of the conventional Pt/C layer (CCM-1) and a mixture layer by blending CNT and Pt/C catalyst (CCM-2). The conventional low-Pt loading catalytic layer was employed as control group (CCM-0). The microstructure of the catalytic layers was characterized by scanning electron microscopy, transmission electron microscopy and nitrogen sorption isotherms method. The electrochemical properties of the catalytic layer and membrane electrode were evaluated by cyclic voltammetry (CV), electrochemical impedance (EIS) and linear scanning voltammetry. The results indicated that the cell performance of the conventional low-Pt loading catalyst coated membrane was improved by the introduction of CNTs in both CCM-1 and CCM-2. Compared to the conventional CCM (CCM-0) with a peak power density of 0.522 W·cm-2 at 70℃ and 100% relative humidity (RH) without backpressure, the maximum power densities of CCM-1 and CCM-2 have been improved by 22.4% and 60.0% under the same test conditions, respectively. The increased performance of CCM-1 is believed to result from the enhancement of contact interface between the catalytic layer and the gas diffusion layer in CCM-1 and consequent decrease of the contact resistance. Furthermore, the outstanding power density of CCM-2 is not only owing to the decreased interface contact resistance between the CCM and the gas diffusion layer, but also due to the significant improvement of gas transmission in the catalytic layer, which leads to the decrease of electrochemical reactant resistance and then improvement of the Pt utilization. That has been confirmed by the Pt utilization of 34.4%, 35.6% and 44.7% for CCM-0, CCM-1 and CCM-2. In addition, it also was confirmed by the extremely low power output (2.9 mW·cm-2) of a CCM with only CNT in the catalytic layer when the fuel cell was tested at 70℃ and 100% RH without back pressure. In addition, the optimum loading of CNT in the mixed catalytic layer is 37.5 μg·cm-2 with the peak power density of 0.91 W·cm-2. This work shows that mixing of CNT and Pt/C catalyst into a catalytic layer is an effective method for improving the Pt utilization and reducing the loading of Pt catalyst.
  • 加载中
    1. [1]

      Chu, S.; Majumdar, A. Nature 2012, 488, 294.  doi: 10.1038/nature11475

    2. [2]

      Wang, J.; Wang, H.; Fan, Y. Engineering 2018, 4, 352.  doi: 10.1016/j.eng.2018.05.007

    3. [3]

      Li, H.; Li, L.; Chen, S.; Zhang, Y.; Li, G. Chin. J. Chem. 2017, 35, 903.  doi: 10.1002/cjoc.v35.6

    4. [4]

      He, X.; Gang, M.; He, G.; Yin, Y.; Cao, L.; Wu, H.; Jiang, Z. Chin. J. Chem. 2017, 35, 673  doi: 10.1002/cjoc.v35.5

    5. [5]

      Hou, I.; Shetti, V.; Huang, S.; Liu, K.; Chao, C.; Lin, S.; Lin, Y.; Chen, L; Luh, T. Org. Chem. Front. 2017, 4, 773.  doi: 10.1039/C7QO00087A

    6. [6]

      Proietti, E.; Jaouen, F.; Lefevre, M.; Larouche, N.; Tian, J.; Herranz, J.; Dodelet, P. Nat. Commun. 2011, 2, 416.  doi: 10.1038/ncomms1427

    7. [7]

      Lee, H.; Park, J.; Kim, D.; Lee, T. J. Power Sources 2004, 131, 200.  doi: 10.1016/j.jpowsour.2003.12.039

    8. [8]

      Peng, S.; Xu. X.; Zhang, J.; Liu, Y.; Lu, S.; Xiang, Y. Acta Chim. Sinica 2015, 73, 137.  doi: 10.3866/PKU.WHXB201411171
       

    9. [9]

      Shin, S.; Kim, A.; Um, S. Int. J. Hydrogen Energy 2016, 41, 9507.  doi: 10.1016/j.ijhydene.2016.04.013

    10. [10]

      Huang, T.; Shen, H.; Jao, T.; Weng, F.; Su, A. Int. J. Hydrogen Energy 2012, 37, 13872.  doi: 10.1016/j.ijhydene.2012.04.108

    11. [11]

      Zhu, C.; Hai, Y.; Zhao, Z.; Yang, Y. Acta Chim. Sinica 2018, 76, 30.
       

    12. [12]

      Zhong, G.; Wang, H.; Yu, H.; Peng, F. Acta Chim. Sinica 2017, 75, 943.
       

    13. [13]

      Wu, Y.; Liao, S. Chin. J. Power Source 2012, 36, 1755.  doi: 10.3969/j.issn.1002-087X.2012.11.049

    14. [14]

      Chen, X.; Yan, H.; Xia, D. Acta Chim. Sinica 2017, 75, 189.  doi: 10.3969/j.issn.0253-2409.2017.02.008
       

    15. [15]

      Yuan, P.; Chen, J.; Pan, D.; Bao, X. Acta Chim. Sinica 2016, 74, 603.
       

    16. [16]

      Chen, G.; Zhao, B.; Wang, C.; Jing, P.; Xiao, Y.; Niu, M.; Zhao, P. Chem. Bull. 2016, 79, 9.

    17. [17]

      Li, L.; Jiang, D.; Zeng, R.; Wang, S.; Jiang, L. Rare Metals 2017, 41, 648.
       

    18. [18]

      Ishikawa, H.; Sugawara, Y.; Inoue, G.; Kawase, M. J. Power Sources 2018, 374, 196.  doi: 10.1016/j.jpowsour.2017.11.026

    19. [19]

      Shin, S.; Kim, A.; Um, S. Electrochim. Acta 2016, 207, 187.  doi: 10.1016/j.electacta.2016.04.178

    20. [20]

      Cho, J.; Kim, J.; Prabhuram, J.; Hwang, S.; Ahn, D.; Ha, H.; Kim, S. J. Power Sources 2009, 187, 378.  doi: 10.1016/j.jpowsour.2008.10.111

    21. [21]

      Pollet, B. G.; Goh, J. T. E. Electrochim. Acta 2014, 128, 292.  doi: 10.1016/j.electacta.2013.09.160

    22. [22]

      Tian, Z.; Lim, S.; Poh, C.; Tang, Z.; Xia, Z.; Luo, Z.; Shen, P.; Chua, D.; Feng, Y.; Shen, Z.; Lin, J. Adv. Energy Mater. 2011, 1, 1205.  doi: 10.1002/aenm.201100371

    23. [23]

      Hou, S.; Chi, B.; Liu, G.; Ren, J.; Song, H.; Liao, S. Electrochim. Acta 2017, 253, 142.  doi: 10.1016/j.electacta.2017.08.160

    24. [24]

      Suzuki, T.; Hashizume, R.; Hayase, M. J. Power Sources 2015, 286, 109.  doi: 10.1016/j.jpowsour.2015.03.119

    25. [25]

      Ji, M.; Wei, Z. Energies 2009, 2, 1057.  doi: 10.3390/en20401057

    26. [26]

      Zenyuk, I.; Das, P.; Weber, A. J. Electrochem. Soc. 2016, 163, F691.  doi: 10.1149/2.1161607jes

    27. [27]

      Lee, M.; Uchida, M.; Tryk, D.; Uchida, H.; Watanabe, M. Electrochim. Acta 2011, 56, 4783.  doi: 10.1016/j.electacta.2011.03.072

    28. [28]

      Koh, J.; Jeon, Y.; Cho, Y.; Kim, J.; Shul, Y. J. Mater. Chem. A2014, 2, 8652.  doi: 10.1039/C4TA00674G

    29. [29]

      Park, Y.; Tokiwa, H.; Kakinuma, K.; Watanabe, M.; Uchida, M. J. Power Sources 2016, 315, 179.  doi: 10.1016/j.jpowsour.2016.02.091

    30. [30]

      Uchida, M.; Park, Y.; Kakinuma, K.; Yano, H.; Tryk, D.; Kamino, T.; Uchida, H.; Watanabe, M. Phys. Chem. Chem. Phys. 2013, 15, 11236.  doi: 10.1039/c3cp51801a

    31. [31]

      Oh, E.; Hempelmann, R.; Nica, V.; Radev, I.; Natter, H. J. Power Sources 2017, 341, 240.  doi: 10.1016/j.jpowsour.2016.11.116

    32. [32]

      Xu, X.; Peng, S.; Zhang, J.; Lu, S.; Xiang, Y. Acta Chim. Sinica 2016, 74, 271.
       

    33. [33]

      Jeon, Y.; Kim, D.; Koh, J.; Ji, Y.; Kim, J.; Shul, Y. Sci. Rep. 2015, 5, 16394.  doi: 10.1038/srep16394

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    3. [3]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    4. [4]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    5. [5]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    6. [6]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    7. [7]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    8. [8]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    9. [9]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    10. [10]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    11. [11]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    12. [12]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    13. [13]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    14. [14]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    15. [15]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    16. [16]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    17. [17]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    18. [18]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    19. [19]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    20. [20]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

Metrics
  • PDF Downloads(32)
  • Abstract views(1362)
  • HTML views(318)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return