Citation: Jin Weize, Lu Guolin, Li Yongjun, Huang Xiaoyu. Recent Advances in Fluorine-containing Materials with Extreme Environment Resistance[J]. Acta Chimica Sinica, ;2018, 76(10): 739-748. doi: 10.6023/A18080340 shu

Recent Advances in Fluorine-containing Materials with Extreme Environment Resistance

  • Corresponding author: Huang Xiaoyu, xyhuang@sioc.ac.cn
  • Received Date: 17 August 2018
    Available Online: 11 October 2018

    Fund Project: Shanghai Scientific and Technological Innovation Project 17DZ1205400Project supported by the National Major Scientific Research Project (No. 2015CB931900), the National Science Fund for Distinguished Young Scholars (No. 51825304), the National Major Natural Science Foundation Project (No. 21632009), National Natural Science Foundation Project (Nos. 21674124, 51773222, 51773223), Special Science and Technology Pilot Program of Chinese Academy of Sciences (Class B) (No. XDB20000000), Shanghai Major Basic Research Project (No. 18JC1410600) and Shanghai Scientific and Technological Innovation Project (No. 17DZ1205400)the National Major Natural Science Foundation Project 21632009National Natural Science Foundation Project 51773222the National Science Fund for Distinguished Young Scholars 51825304National Natural Science Foundation Project 21674124Special Science and Technology Pilot Program of Chinese Academy of Sciences (Class B) XDB20000000National Natural Science Foundation Project 51773223Shanghai Major Basic Research Project 18JC1410600the National Major Scientific Research Project 2015CB931900

Figures(8)

  • The extreme environment resistance materials can be normally used under severe conditions (e.g. T ≤ -50℃ or T ≥ 200℃, 1000 h exposed to UV light etc.), which common hydrocarbon materials cannot tolerate. It was found that fluorine atoms can effectively enhance the extreme environment resistance property of materials. The reason why fluorine atoms have such ability is mainly due to two key factors:first, fluorine and carbon elements are in the same cycle of the periodic table, the electronegativity of fluorine is large (4.0) and its atomic radius is small; second, polarization of fluorine atom is extremely low. The C-F bond is the strongest chemical single bond (≥ 116 kcal/mol) in which the carbon atom participates. It is a short bond and highly polarized. This paper makes brief introduction to the development and present situation of fluorine-containing materials with extreme environment resistance. In the field of fluorination methods, the history of fluorine chemistry since 1970s, the researches on the formation and fracture of carbon-fluorine bond, the influence of fluorine on the formation of carbon-carbon bond and the related researches on polyfluoro-arylation methods are introduced. This paper also introduces the important results of fluorine-containing materials in lithium isotope extraction, thermo-stable fluoropolymers which can be applied in aviation, aerospace, automobile and other fields, as well as the preparation of high-performance fluorine-containing materials with low dielectric constant in electronic equipment and communication fields. In the future, how to further develop and optimize the fluorine-containing materials with extreme environment resistance and put the research results into large-scale use is the working direction for researchers.
  • 加载中
    1. [1]

      Bai, C. L.; Liu, M. H. Angew. Chem., Int. Ed. 2013, 52, 2678.  doi: 10.1002/anie.201210058

    2. [2]

      Hiyama, T. ; Kanie, K. ; Kusumoto, T. ; Morizawa, Y. ; Shimizu, M. Organofluorine Compounds: Chemistry and Applications, Springer, New York, 2000, pp. 1~272.

    3. [3]

      Uneyama, K. Organofluorine Chemistry, Blackwell, Oxford, 2006, pp. 1~337.

    4. [4]

      Sharpless, K. B. Efficient Preparations of Fluorine Compounds, Wiley, Hoboken, 2013, pp. I~XI.

    5. [5]

      Shibata, N.; Matsnev, A.; Cahard, D. Beilstein J. Org. Chem. 2010, 6, 65.

    6. [6]

      Hintermann, L.; Togni, A. Angew. Chem., Int. Ed. 2000, 39, 4359.  doi: 10.1002/(ISSN)1521-3773

    7. [7]

      Chen, Q. Y.; Duan, J. X. Tetrahedron Lett. 1993, 34, 4241.  doi: 10.1016/S0040-4039(00)60538-5

    8. [8]

      Su, D. B.; Duan, J. X.; Chen, Q. Y. Tetrahedron Lett. 1991, 32, 7689.  doi: 10.1016/0040-4039(91)80566-O

    9. [9]

      Grushin, V. V. Acc. Chem. Res. 2010, 43, 160.  doi: 10.1021/ar9001763

    10. [10]

      Cho, E. J.; Senecal, T. D.; Kinzel, T.; Zhang, Y.; Watson, D. A.; Buchwald, S. L. Science 2010, 328, 1679.  doi: 10.1126/science.1190524

    11. [11]

      Wang, X. S.; Mei, T. S.; Yu, J. Q. J. Am. Chem. Soc. 2009, 131, 7520.  doi: 10.1021/ja901352k

    12. [12]

      Hull, K. L.; Anani, W. Q.; Sanford, M. S. J. Am. Chem. Soc. 2006, 128, 7134.  doi: 10.1021/ja061943k

    13. [13]

      Furuya, T.; Kuttruff, C. A.; Ritter, T. Curr. Opin. Drug Discov. Devel. 2008, 11, 803.

    14. [14]

      Tang, P.; Furuya, T.; Ritter, T. J. Am. Chem. Soc. 2010, 132, 12150.  doi: 10.1021/ja105834t

    15. [15]

      Sun, H.; Dimagno, S. G. Angew. Chem., Int. Ed. 2006, 45, 2720.  doi: 10.1002/(ISSN)1521-3773

    16. [16]

      Anbarasan, P.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2010, 49, 2219.  doi: 10.1002/anie.v49:12

    17. [17]

      Barker, T. J.; Boger, D. L. J. Am. Chem. Soc. 2012, 134, 13588.  doi: 10.1021/ja3063716

    18. [18]

      Liu, W.; Huang, X. Y.; Cheng, M. J.; Nielsen, R. J.; William, A. G. I.; Groves, J. T. Science 2012, 337, 1322.  doi: 10.1126/science.1222327

    19. [19]

      Yin, F.; Wang, Z.; Li, Z., Li, C. J. Am. Chem. Soc. 2012, 134, 10401.  doi: 10.1021/ja3048255

    20. [20]

      Chen, H.; Wang, X.; Guo, M.; Zhao, W.; Tang, X.; Wang, G. Org. Chem. Front. 2017, 4, 2403.  doi: 10.1039/C7QO00611J

    21. [21]

      Zhou, N.; Xu, P.; Li, W.; Cheng, Y.; Zhu, C. Acta Chim. Sinica 2017, 75, 60(in Chinese).
       

    22. [22]

      Amii, H.; Uneyana, K. Chem. Rev. 2009, 109, 2119.  doi: 10.1021/cr800388c

    23. [23]

      Aizenberg, M.; Milstein, D. Science 1994, 265, 359.  doi: 10.1126/science.265.5170.359

    24. [24]

      Peterson, A. A.; McNeill, K. Organometallics 2006, 25, 4938.  doi: 10.1021/om0607292

    25. [25]

      Ishii, Y.; Chatani, N.; Yorimitsu, S.; Murai, S. Chem. Lett. 1998, 27, 157.  doi: 10.1246/cl.1998.157

    26. [26]

      Bohm, V. P. W.; Gstottmayr, C. W. K.; Weskamp, T.; Herrmann, W. A. Angew. Chem., Int. Ed. 2001, 40, 3387.  doi: 10.1002/(ISSN)1521-3773

    27. [27]

      Braun, T.; Perutz, R. N.; Sladek, M. I. Chem. Commun. 2001, 21, 2254.

    28. [28]

      Mongin, F.; Mojovic, L.; Guillamet, B.; Trecourt, C. F.; Queguiner, G. J. Org. Chem. 2002, 67, 8991.  doi: 10.1021/jo026136s

    29. [29]

      Schaub, T.; Backes, M.; Radius, U. J. Am. Chem. Soc. 2006, 128, 15964.  doi: 10.1021/ja064068b

    30. [30]

      Widdowson, D. A.; Wilhelm, R. Chem. Commun. 2000, 1, 2211.

    31. [31]

      Kim, Y.; Yu, S. J. Am. Chem. Soc. 2003, 125, 1696.  doi: 10.1021/ja028966t

    32. [32]

      Cargill, M. R.; Sanford, G.; Tadeusiak, A. J.; Yufit, D. S.; Howard, J. A.; Kilickiran, P.; Nelles, G. J. Org. Chem. 2010, 75, 5860.  doi: 10.1021/jo100877j

    33. [33]

      Mikami, K.; Miyamoto, T.; Hatano, M. Chem. Commun. 2004, 2082.

    34. [34]

      Douvris, C.; Ozerov, O. V. Science 2008, 321, 1188.  doi: 10.1126/science.1159979

    35. [35]

      Grushin, V. V.; Marshall, W. J. J. Am. Chem. Soc. 2006, 128, 12644.  doi: 10.1021/ja064935c

    36. [36]

      Grushin, V. V.; Marshall, W. J. J. Am. Chem. Soc. 2006, 128, 19880.

    37. [37]

      Watson, D. A.; Su, M.; Teverovskiy, G.; Zhang, Y.; García-Fortanet, J.; Kinzel, T.; Buchwald, S. L. Science 2009, 325, 1661.  doi: 10.1126/science.1178239

    38. [38]

      Chu, L. L.; Qing, F. L. J. Am. Chem. Soc. 2010, 132, 7262.  doi: 10.1021/ja102175w

    39. [39]

      Chu, L. L.; Qing, F. L. Org. Lett. 2010, 12, 5060.  doi: 10.1021/ol1023135

    40. [40]

      Liu, T. F.; Shen, Q. L. Org. Lett. 2011, 13, 2342.  doi: 10.1021/ol2005903

    41. [41]

      Liu, T. F.; Shao, X. X.; Wu, Y. M.; Shen, Q. L. Angew. Chem., Int. Ed. 2012, 51, 540.  doi: 10.1002/anie.201106673

    42. [42]

      Prakash, G. K. S.; Hu, J. B. Acc. Chem. Res. 2007, 40, 921.  doi: 10.1021/ar700149s

    43. [43]

      Zhao, Y. C.; Huang, W. Z.; Zhu, L. G.; Hu, J. B. Org. Lett. 2010, 12, 1444.  doi: 10.1021/ol100090r

    44. [44]

      Zhou, Q. H.; Ruffoni, A.; Gianatassio, R.; Fujiwara, Y.; Sella, E.; Shabat, D.; Baran, P. S. Angew. Chem., Int. Ed. 2013, 52, 3949.  doi: 10.1002/anie.v52.14

    45. [45]

      Rong, J.; Ni, C.; Wang, Y.; Kuang, C.; Gu, Y.; Hu, J. Acta Chim. Sinica 2017, 75, 105(in Chinese).
       

    46. [46]

      Lafrance, M.; Rowley, C. N.; Woo, T. K.; Fagnou, K. J. Am. Chem. Soc. 2006, 128, 8754.  doi: 10.1021/ja062509l

    47. [47]

      Do, H. Q.; Daugulis, O. J. Am. Chem. Soc. 2008, 130, 1128.  doi: 10.1021/ja077862l

    48. [48]

      He, C. Y.; Fan, S. L.; Zhang, X. G. J. Am. Chem. Soc. 2010, 132, 12850.  doi: 10.1021/ja106046p

    49. [49]

      Zhang, X. G.; Fan, S. L.; He, C. Y.; Wan, X.; Min, Q. Q.; Yang, J.; Jiang, Z. X. J. Am. Chem. Soc. 2010, 132, 4506.  doi: 10.1021/ja908434e

    50. [50]

      Zeng, Y. W.; Zhang, L. J.; Zhao, Y. C.; Ni, C. F.; Zhao, J. W.; Hu, J. B. J. Am. Chem. Soc. 2013, 135, 2955.  doi: 10.1021/ja312711c

    51. [51]

      Wang, X.; Xu, Y.; Mo, F.; Ji, G. J.; Qiu, D.; Feng, J. J.; Ye, Y. X.; Zhang, S. N.; Zhang, Y.; Wang, J. B. J. Am. Chem. Soc. 2013, 135, 10330.  doi: 10.1021/ja4056239

    52. [52]

      Dai, J. J.; Fang, C.; Xiao, B.; Yi, J.; Xu, J.; Liu, Z. J.; Lu, X.; Liu, L.; Fu, Y. J. Am. Chem. Soc. 2013, 135, 8436.  doi: 10.1021/ja404217t

    53. [53]

      Lewis, G. N.; Macdonald, R. T. J. Am. Chem. Soc. 1936, 58, 2519.  doi: 10.1021/ja01303a045

    54. [54]

      Jeon, Y. S.; Jang, N. H.; Kang, B. M.; Jeon, Y. S.; Kim, C. S.; Chio, K. Y.; Ryu, H. Bull. Korean Chem. Soc. 2007, 28, 451.  doi: 10.5012/bkcs.2007.28.3.451

    55. [55]

      Kim, D. W. J. Radioanal. Nucl. Chem. 2002, 252, 559.  doi: 10.1023/A:1015815123149

    56. [56]

      Takahashi, H.; Zhang, Y. H.; Miyajima, T.; Oi, T. J. Mater. Chem. 2006, 16, 1462.  doi: 10.1039/B514857J

    57. [57]

      Kim, D. W.; Kang, B. M.; Jeon, B. K.; Joen, Y. S. J. Radioanal. Nucl. Chem. 2003, 256, 81.  doi: 10.1023/A:1023352126261

    58. [58]

      Araki, H.; Umeda, M.; Enokida, Y.; Yamamoto, I. Fusion. Eng. Des. 1998, 39, 1009.

    59. [59]

      Otake, K.; Suzuki, T.; Kim, H. J.; Nomura, M.; Fujii, Y. J. Nucl. Sci. Technol. 2006, 43, 419.  doi: 10.1080/18811248.2006.9711115

    60. [60]

      Black, J. R.; Umeda, G.; Dunn, B.; Mcdonough, W. F.; Kavner, A. J. Am. Chem. Soc. 2009, 131, 9904.  doi: 10.1021/ja903926x

    61. [61]

      Saleem, M.; Hussain, S.; Rafiq, M.; Baig, M. A. J. Appl. Phys. 2006, 100, 053111-1.

    62. [62]

      Olivares, I. E.; Duarte, A. E.; Saravia, E. A.; Duarte, F. J. Appl. Opt. 2002, 41, 2973.  doi: 10.1364/AO.41.002973

    63. [63]

      Shanghai Institute of Organic Chemistry, CAS. ZL2012104371552, 2012.

    64. [64]

      Hu, J. B. ; Zhang, W. ; Zheng, W. Q. ; Chen, G. H. ; Shi, X. ; Xu, Y. C. ; Lv, H. G. ; Yuan, C. Y. ZL201310239535X, 2013.

    65. [65]

      Hu, J. B. ; Zhang, W. ; Zheng, W. Q. ; Shi, X. ; Xu, Y. C. ; Lv, H. G. ; Yuan, C. Y. ZL2013102395326, 2013.

    66. [66]

      Shanghai Institute of Organic Chemistry, CAS. PCT/CN2013/075340, 2013.

    67. [67]

      Hu, J. B. ; Zhang, W. ; Zheng, W. Q. ; Chen, G. H. ; Shi, X. ; Xu, Y. C. ; Lv, H. G. ; Yuan, C. Y. PCT/CN2014/074304, 2014.

    68. [68]

      Hu, J. B. ; Zhang, W. ; Xu, Y. C. ; Gu, H. X. CN2017103408158, 2017.

    69. [69]

      Hu, J. B. ; Zhang, W. ; Zhang, L. J. CN2017103398796, 2017.

    70. [70]

      Hu, J. B. ; Zhang, W. ; Gu, H. X. Zheng, W. Q. CN2017103398917, 2017.

    71. [71]

      Hu, J. B. ; Zhang, W. ; Zheng, W. Q. Xu, Y. C. CN2017103398936, 2017.

    72. [72]

      Mahl, A.; Lim, A.; Latta, J.; Yemam, H. A.; Greife, U.; Sellinger, A. Nucl. Instrum. Methods Phys. Res. A 2018, 884, 113.  doi: 10.1016/j.nima.2017.11.091

    73. [73]

      Babb, D. A.; Ezzell, B. R.; Clement, K. S.; Richey, W. F.; Kennedy, A. P. J. Polym. Sci. Polym. Chem. 1993, 31, 3465.  doi: 10.1002/pola.1993.080311336

    74. [74]

      Zhu, Y. Q.; Huang, Y. G.; Meng, W. D.; Li, H.; Qing, F. L. Polymer 2006, 47, 6272.  doi: 10.1016/j.polymer.2006.06.066

    75. [75]

      Yao, R. X.; Kong, L.; Yin, Z. S.; Qing, F. L. J. Fluorine Chem. 2008, 129, 1003.  doi: 10.1016/j.jfluchem.2008.04.012

    76. [76]

      Li, Y. J.; Chen, S.; Zhang, S.; Li, Q. N.; Lu, G. L.; Li, W. X.; Liu, H.; Huang, X. Y. Polymer 2009, 50, 5192.  doi: 10.1016/j.polymer.2009.09.018

    77. [77]

      Wang, Q.; Yu, X.; Jin, J.; Wu, Y.; Liang, Y. Chin. J. Chem. 2018, 36, 223.  doi: 10.1002/cjoc.v36.3

    78. [78]

      Watanabe, Y.; Shibasaki, Y.; Ando, S.; Ueda, M. Polym J. 2006, 38, 79.  doi: 10.1295/polymj.38.79

    79. [79]

      Towery, D.; Fury, M. A. J. Electron. Mater. 1998, 27, 1088.  doi: 10.1007/s11664-998-0142-z

    80. [80]

      Tsuchiya, K.; Shibasaki, Y.; Aoyagi, M.; Ueda, M. Macromolecules 2006, 39, 3964.  doi: 10.1021/ma0521607

    81. [81]

      Niu, Y. M.; Zhu, X. L.; Liu, L. Z.; Zhang, Y.; Wang, G. B.; Jiang, Z. H. React. Funct. Polym. 2006, 66, 559.  doi: 10.1016/j.reactfunctpolym.2005.10.009

    82. [82]

      Dang, T. D.; Mather, P. T.; Alexander, M. D.; Grayson, C. J.; Houtz, M. D.; Spry, R. J.; Arnold, F. E. J. Polym. Sci. Polym. Chem. 2000, 38, 1991.  doi: 10.1002/(ISSN)1099-0518

    83. [83]

      Fukukawa, K.; Shibasakl, Y.; Ueda, M. Macromolecules 2004, 37, 8256.  doi: 10.1021/ma049063i

    84. [84]

      Su, Y. C.; Chang, F. C. Polymer 2003, 44, 7989.  doi: 10.1016/j.polymer.2003.10.026

    85. [85]

      Sharangpani, R.; Singh, R. Rev. Sci. Instrum. 1997, 68, 1564.  doi: 10.1063/1.1147926

    86. [86]

      Rosenmeyer, C. T.; Wu, H. MRS Proceedings 1996, 427, 463.  doi: 10.1557/PROC-427-463

    87. [87]

      Luo, Y. J.; Jin, K. K.; He, C. Q.; Wang, J. J.; Sun, J.; He, F. K.; Zhou, J. F.; Wang, Y. Q.; Fang, Q. Macromolecules 2016, 49, 7314.  doi: 10.1021/acs.macromol.6b01678

    88. [88]

      Wang, J. J.; Sun, J.; Zhou, J. F.; Jin, K. K.; Fang, Q. ACS Appl. Mater. Interfaces 2017, 9, 12782.  doi: 10.1021/acsami.7b01415

    89. [89]

      Wang, J. J.; Zhou, J. F.; Jin, K. K.; Wang, L.; Sun, J.; Fang, Q. Macromolecules 2017, 50, 9394.  doi: 10.1021/acs.macromol.7b02000

    90. [90]

      Zhao, Z.; Ni, H.; Han, Z.; Jiang, T.; Xu, Y.; Lu, X.; Ye, P. ACS Appl. Mater. Interfaces 2013, 5, 7808.  doi: 10.1021/am401568b

    91. [91]

      Cheng, Y. Acta Polym. Sinica 2017, 8, 1234.

    92. [92]

      Jha, S. K.; Mishra, V. K.; Sharma, D. K.; Damodaran, T. Rev. Environ. Contam. Toxicol. 2011, 211, 121.

    93. [93]

      Lau, C.; Butenhoff, J. L.; Rogers, J. M. Toxicol. Appl. Pharm. 2004, 198, 231.  doi: 10.1016/j.taap.2003.11.031

    94. [94]

      Dewitt, J. C.; Shnyra, A.; Badr, M. Z.; Loveless, S. E.; Hoban, D.; Frame, S. R.; Cunard, R.; Anderson, S. E.; Meade, B. J.; Peden-Adams, M. M.; Luebke, R. W.; Luster, M. I. Crit. Rev. Toxicol. 2009, 39, 76.  doi: 10.1080/10408440802209804

    95. [95]

      Younglai, E. V.; Wu, Y. J.; Foster, W. G. Curr. Pharm. Design 2007, 13, 3005.  doi: 10.2174/138161207782110499

    96. [96]

      Yao, W. Q.; Li, Y. J.; Huang, X. Y. Polymer 2014, 55, 6197.  doi: 10.1016/j.polymer.2014.09.036

    97. [97]

      Tong, L.; Shen, Z.; Zhang, S.; Li, Y. J.; Lu, G. L.; Huang, X. Y. Polymer 2008, 49, 4534.  doi: 10.1016/j.polymer.2008.08.033

    98. [98]

      Wang, X.; Cheng, W. G.; Yang, Q. Y.; Niu, H. Y.; Liu, Q.; Liu, Y.; Gao, M.; Xu, M.; Xu, A.; Liu, S. J.; Huang, X. Y.; Du, Y. G. J. Environ. Sci. 2018, 69, 217.  doi: 10.1016/j.jes.2017.10.014

  • 加载中
    1. [1]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    2. [2]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    3. [3]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    4. [4]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    5. [5]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    6. [6]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    7. [7]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    8. [8]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    9. [9]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    10. [10]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    11. [11]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    12. [12]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    13. [13]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    14. [14]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    15. [15]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    16. [16]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    17. [17]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    18. [18]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    19. [19]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    20. [20]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

Metrics
  • PDF Downloads(33)
  • Abstract views(2008)
  • HTML views(509)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return