Citation: Jin Weize, Lu Guolin, Li Yongjun, Huang Xiaoyu. Recent Advances in Fluorine-containing Materials with Extreme Environment Resistance[J]. Acta Chimica Sinica, ;2018, 76(10): 739-748. doi: 10.6023/A18080340 shu

Recent Advances in Fluorine-containing Materials with Extreme Environment Resistance

  • Corresponding author: Huang Xiaoyu, xyhuang@sioc.ac.cn
  • Received Date: 17 August 2018
    Available Online: 11 October 2018

    Fund Project: Shanghai Scientific and Technological Innovation Project 17DZ1205400Project supported by the National Major Scientific Research Project (No. 2015CB931900), the National Science Fund for Distinguished Young Scholars (No. 51825304), the National Major Natural Science Foundation Project (No. 21632009), National Natural Science Foundation Project (Nos. 21674124, 51773222, 51773223), Special Science and Technology Pilot Program of Chinese Academy of Sciences (Class B) (No. XDB20000000), Shanghai Major Basic Research Project (No. 18JC1410600) and Shanghai Scientific and Technological Innovation Project (No. 17DZ1205400)the National Major Natural Science Foundation Project 21632009National Natural Science Foundation Project 51773222the National Science Fund for Distinguished Young Scholars 51825304National Natural Science Foundation Project 21674124Special Science and Technology Pilot Program of Chinese Academy of Sciences (Class B) XDB20000000National Natural Science Foundation Project 51773223Shanghai Major Basic Research Project 18JC1410600the National Major Scientific Research Project 2015CB931900

Figures(8)

  • The extreme environment resistance materials can be normally used under severe conditions (e.g. T ≤ -50℃ or T ≥ 200℃, 1000 h exposed to UV light etc.), which common hydrocarbon materials cannot tolerate. It was found that fluorine atoms can effectively enhance the extreme environment resistance property of materials. The reason why fluorine atoms have such ability is mainly due to two key factors:first, fluorine and carbon elements are in the same cycle of the periodic table, the electronegativity of fluorine is large (4.0) and its atomic radius is small; second, polarization of fluorine atom is extremely low. The C-F bond is the strongest chemical single bond (≥ 116 kcal/mol) in which the carbon atom participates. It is a short bond and highly polarized. This paper makes brief introduction to the development and present situation of fluorine-containing materials with extreme environment resistance. In the field of fluorination methods, the history of fluorine chemistry since 1970s, the researches on the formation and fracture of carbon-fluorine bond, the influence of fluorine on the formation of carbon-carbon bond and the related researches on polyfluoro-arylation methods are introduced. This paper also introduces the important results of fluorine-containing materials in lithium isotope extraction, thermo-stable fluoropolymers which can be applied in aviation, aerospace, automobile and other fields, as well as the preparation of high-performance fluorine-containing materials with low dielectric constant in electronic equipment and communication fields. In the future, how to further develop and optimize the fluorine-containing materials with extreme environment resistance and put the research results into large-scale use is the working direction for researchers.
  • 加载中
    1. [1]

      Bai, C. L.; Liu, M. H. Angew. Chem., Int. Ed. 2013, 52, 2678.  doi: 10.1002/anie.201210058

    2. [2]

      Hiyama, T. ; Kanie, K. ; Kusumoto, T. ; Morizawa, Y. ; Shimizu, M. Organofluorine Compounds: Chemistry and Applications, Springer, New York, 2000, pp. 1~272.

    3. [3]

      Uneyama, K. Organofluorine Chemistry, Blackwell, Oxford, 2006, pp. 1~337.

    4. [4]

      Sharpless, K. B. Efficient Preparations of Fluorine Compounds, Wiley, Hoboken, 2013, pp. I~XI.

    5. [5]

      Shibata, N.; Matsnev, A.; Cahard, D. Beilstein J. Org. Chem. 2010, 6, 65.

    6. [6]

      Hintermann, L.; Togni, A. Angew. Chem., Int. Ed. 2000, 39, 4359.  doi: 10.1002/(ISSN)1521-3773

    7. [7]

      Chen, Q. Y.; Duan, J. X. Tetrahedron Lett. 1993, 34, 4241.  doi: 10.1016/S0040-4039(00)60538-5

    8. [8]

      Su, D. B.; Duan, J. X.; Chen, Q. Y. Tetrahedron Lett. 1991, 32, 7689.  doi: 10.1016/0040-4039(91)80566-O

    9. [9]

      Grushin, V. V. Acc. Chem. Res. 2010, 43, 160.  doi: 10.1021/ar9001763

    10. [10]

      Cho, E. J.; Senecal, T. D.; Kinzel, T.; Zhang, Y.; Watson, D. A.; Buchwald, S. L. Science 2010, 328, 1679.  doi: 10.1126/science.1190524

    11. [11]

      Wang, X. S.; Mei, T. S.; Yu, J. Q. J. Am. Chem. Soc. 2009, 131, 7520.  doi: 10.1021/ja901352k

    12. [12]

      Hull, K. L.; Anani, W. Q.; Sanford, M. S. J. Am. Chem. Soc. 2006, 128, 7134.  doi: 10.1021/ja061943k

    13. [13]

      Furuya, T.; Kuttruff, C. A.; Ritter, T. Curr. Opin. Drug Discov. Devel. 2008, 11, 803.

    14. [14]

      Tang, P.; Furuya, T.; Ritter, T. J. Am. Chem. Soc. 2010, 132, 12150.  doi: 10.1021/ja105834t

    15. [15]

      Sun, H.; Dimagno, S. G. Angew. Chem., Int. Ed. 2006, 45, 2720.  doi: 10.1002/(ISSN)1521-3773

    16. [16]

      Anbarasan, P.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2010, 49, 2219.  doi: 10.1002/anie.v49:12

    17. [17]

      Barker, T. J.; Boger, D. L. J. Am. Chem. Soc. 2012, 134, 13588.  doi: 10.1021/ja3063716

    18. [18]

      Liu, W.; Huang, X. Y.; Cheng, M. J.; Nielsen, R. J.; William, A. G. I.; Groves, J. T. Science 2012, 337, 1322.  doi: 10.1126/science.1222327

    19. [19]

      Yin, F.; Wang, Z.; Li, Z., Li, C. J. Am. Chem. Soc. 2012, 134, 10401.  doi: 10.1021/ja3048255

    20. [20]

      Chen, H.; Wang, X.; Guo, M.; Zhao, W.; Tang, X.; Wang, G. Org. Chem. Front. 2017, 4, 2403.  doi: 10.1039/C7QO00611J

    21. [21]

      Zhou, N.; Xu, P.; Li, W.; Cheng, Y.; Zhu, C. Acta Chim. Sinica 2017, 75, 60(in Chinese).
       

    22. [22]

      Amii, H.; Uneyana, K. Chem. Rev. 2009, 109, 2119.  doi: 10.1021/cr800388c

    23. [23]

      Aizenberg, M.; Milstein, D. Science 1994, 265, 359.  doi: 10.1126/science.265.5170.359

    24. [24]

      Peterson, A. A.; McNeill, K. Organometallics 2006, 25, 4938.  doi: 10.1021/om0607292

    25. [25]

      Ishii, Y.; Chatani, N.; Yorimitsu, S.; Murai, S. Chem. Lett. 1998, 27, 157.  doi: 10.1246/cl.1998.157

    26. [26]

      Bohm, V. P. W.; Gstottmayr, C. W. K.; Weskamp, T.; Herrmann, W. A. Angew. Chem., Int. Ed. 2001, 40, 3387.  doi: 10.1002/(ISSN)1521-3773

    27. [27]

      Braun, T.; Perutz, R. N.; Sladek, M. I. Chem. Commun. 2001, 21, 2254.

    28. [28]

      Mongin, F.; Mojovic, L.; Guillamet, B.; Trecourt, C. F.; Queguiner, G. J. Org. Chem. 2002, 67, 8991.  doi: 10.1021/jo026136s

    29. [29]

      Schaub, T.; Backes, M.; Radius, U. J. Am. Chem. Soc. 2006, 128, 15964.  doi: 10.1021/ja064068b

    30. [30]

      Widdowson, D. A.; Wilhelm, R. Chem. Commun. 2000, 1, 2211.

    31. [31]

      Kim, Y.; Yu, S. J. Am. Chem. Soc. 2003, 125, 1696.  doi: 10.1021/ja028966t

    32. [32]

      Cargill, M. R.; Sanford, G.; Tadeusiak, A. J.; Yufit, D. S.; Howard, J. A.; Kilickiran, P.; Nelles, G. J. Org. Chem. 2010, 75, 5860.  doi: 10.1021/jo100877j

    33. [33]

      Mikami, K.; Miyamoto, T.; Hatano, M. Chem. Commun. 2004, 2082.

    34. [34]

      Douvris, C.; Ozerov, O. V. Science 2008, 321, 1188.  doi: 10.1126/science.1159979

    35. [35]

      Grushin, V. V.; Marshall, W. J. J. Am. Chem. Soc. 2006, 128, 12644.  doi: 10.1021/ja064935c

    36. [36]

      Grushin, V. V.; Marshall, W. J. J. Am. Chem. Soc. 2006, 128, 19880.

    37. [37]

      Watson, D. A.; Su, M.; Teverovskiy, G.; Zhang, Y.; García-Fortanet, J.; Kinzel, T.; Buchwald, S. L. Science 2009, 325, 1661.  doi: 10.1126/science.1178239

    38. [38]

      Chu, L. L.; Qing, F. L. J. Am. Chem. Soc. 2010, 132, 7262.  doi: 10.1021/ja102175w

    39. [39]

      Chu, L. L.; Qing, F. L. Org. Lett. 2010, 12, 5060.  doi: 10.1021/ol1023135

    40. [40]

      Liu, T. F.; Shen, Q. L. Org. Lett. 2011, 13, 2342.  doi: 10.1021/ol2005903

    41. [41]

      Liu, T. F.; Shao, X. X.; Wu, Y. M.; Shen, Q. L. Angew. Chem., Int. Ed. 2012, 51, 540.  doi: 10.1002/anie.201106673

    42. [42]

      Prakash, G. K. S.; Hu, J. B. Acc. Chem. Res. 2007, 40, 921.  doi: 10.1021/ar700149s

    43. [43]

      Zhao, Y. C.; Huang, W. Z.; Zhu, L. G.; Hu, J. B. Org. Lett. 2010, 12, 1444.  doi: 10.1021/ol100090r

    44. [44]

      Zhou, Q. H.; Ruffoni, A.; Gianatassio, R.; Fujiwara, Y.; Sella, E.; Shabat, D.; Baran, P. S. Angew. Chem., Int. Ed. 2013, 52, 3949.  doi: 10.1002/anie.v52.14

    45. [45]

      Rong, J.; Ni, C.; Wang, Y.; Kuang, C.; Gu, Y.; Hu, J. Acta Chim. Sinica 2017, 75, 105(in Chinese).
       

    46. [46]

      Lafrance, M.; Rowley, C. N.; Woo, T. K.; Fagnou, K. J. Am. Chem. Soc. 2006, 128, 8754.  doi: 10.1021/ja062509l

    47. [47]

      Do, H. Q.; Daugulis, O. J. Am. Chem. Soc. 2008, 130, 1128.  doi: 10.1021/ja077862l

    48. [48]

      He, C. Y.; Fan, S. L.; Zhang, X. G. J. Am. Chem. Soc. 2010, 132, 12850.  doi: 10.1021/ja106046p

    49. [49]

      Zhang, X. G.; Fan, S. L.; He, C. Y.; Wan, X.; Min, Q. Q.; Yang, J.; Jiang, Z. X. J. Am. Chem. Soc. 2010, 132, 4506.  doi: 10.1021/ja908434e

    50. [50]

      Zeng, Y. W.; Zhang, L. J.; Zhao, Y. C.; Ni, C. F.; Zhao, J. W.; Hu, J. B. J. Am. Chem. Soc. 2013, 135, 2955.  doi: 10.1021/ja312711c

    51. [51]

      Wang, X.; Xu, Y.; Mo, F.; Ji, G. J.; Qiu, D.; Feng, J. J.; Ye, Y. X.; Zhang, S. N.; Zhang, Y.; Wang, J. B. J. Am. Chem. Soc. 2013, 135, 10330.  doi: 10.1021/ja4056239

    52. [52]

      Dai, J. J.; Fang, C.; Xiao, B.; Yi, J.; Xu, J.; Liu, Z. J.; Lu, X.; Liu, L.; Fu, Y. J. Am. Chem. Soc. 2013, 135, 8436.  doi: 10.1021/ja404217t

    53. [53]

      Lewis, G. N.; Macdonald, R. T. J. Am. Chem. Soc. 1936, 58, 2519.  doi: 10.1021/ja01303a045

    54. [54]

      Jeon, Y. S.; Jang, N. H.; Kang, B. M.; Jeon, Y. S.; Kim, C. S.; Chio, K. Y.; Ryu, H. Bull. Korean Chem. Soc. 2007, 28, 451.  doi: 10.5012/bkcs.2007.28.3.451

    55. [55]

      Kim, D. W. J. Radioanal. Nucl. Chem. 2002, 252, 559.  doi: 10.1023/A:1015815123149

    56. [56]

      Takahashi, H.; Zhang, Y. H.; Miyajima, T.; Oi, T. J. Mater. Chem. 2006, 16, 1462.  doi: 10.1039/B514857J

    57. [57]

      Kim, D. W.; Kang, B. M.; Jeon, B. K.; Joen, Y. S. J. Radioanal. Nucl. Chem. 2003, 256, 81.  doi: 10.1023/A:1023352126261

    58. [58]

      Araki, H.; Umeda, M.; Enokida, Y.; Yamamoto, I. Fusion. Eng. Des. 1998, 39, 1009.

    59. [59]

      Otake, K.; Suzuki, T.; Kim, H. J.; Nomura, M.; Fujii, Y. J. Nucl. Sci. Technol. 2006, 43, 419.  doi: 10.1080/18811248.2006.9711115

    60. [60]

      Black, J. R.; Umeda, G.; Dunn, B.; Mcdonough, W. F.; Kavner, A. J. Am. Chem. Soc. 2009, 131, 9904.  doi: 10.1021/ja903926x

    61. [61]

      Saleem, M.; Hussain, S.; Rafiq, M.; Baig, M. A. J. Appl. Phys. 2006, 100, 053111-1.

    62. [62]

      Olivares, I. E.; Duarte, A. E.; Saravia, E. A.; Duarte, F. J. Appl. Opt. 2002, 41, 2973.  doi: 10.1364/AO.41.002973

    63. [63]

      Shanghai Institute of Organic Chemistry, CAS. ZL2012104371552, 2012.

    64. [64]

      Hu, J. B. ; Zhang, W. ; Zheng, W. Q. ; Chen, G. H. ; Shi, X. ; Xu, Y. C. ; Lv, H. G. ; Yuan, C. Y. ZL201310239535X, 2013.

    65. [65]

      Hu, J. B. ; Zhang, W. ; Zheng, W. Q. ; Shi, X. ; Xu, Y. C. ; Lv, H. G. ; Yuan, C. Y. ZL2013102395326, 2013.

    66. [66]

      Shanghai Institute of Organic Chemistry, CAS. PCT/CN2013/075340, 2013.

    67. [67]

      Hu, J. B. ; Zhang, W. ; Zheng, W. Q. ; Chen, G. H. ; Shi, X. ; Xu, Y. C. ; Lv, H. G. ; Yuan, C. Y. PCT/CN2014/074304, 2014.

    68. [68]

      Hu, J. B. ; Zhang, W. ; Xu, Y. C. ; Gu, H. X. CN2017103408158, 2017.

    69. [69]

      Hu, J. B. ; Zhang, W. ; Zhang, L. J. CN2017103398796, 2017.

    70. [70]

      Hu, J. B. ; Zhang, W. ; Gu, H. X. Zheng, W. Q. CN2017103398917, 2017.

    71. [71]

      Hu, J. B. ; Zhang, W. ; Zheng, W. Q. Xu, Y. C. CN2017103398936, 2017.

    72. [72]

      Mahl, A.; Lim, A.; Latta, J.; Yemam, H. A.; Greife, U.; Sellinger, A. Nucl. Instrum. Methods Phys. Res. A 2018, 884, 113.  doi: 10.1016/j.nima.2017.11.091

    73. [73]

      Babb, D. A.; Ezzell, B. R.; Clement, K. S.; Richey, W. F.; Kennedy, A. P. J. Polym. Sci. Polym. Chem. 1993, 31, 3465.  doi: 10.1002/pola.1993.080311336

    74. [74]

      Zhu, Y. Q.; Huang, Y. G.; Meng, W. D.; Li, H.; Qing, F. L. Polymer 2006, 47, 6272.  doi: 10.1016/j.polymer.2006.06.066

    75. [75]

      Yao, R. X.; Kong, L.; Yin, Z. S.; Qing, F. L. J. Fluorine Chem. 2008, 129, 1003.  doi: 10.1016/j.jfluchem.2008.04.012

    76. [76]

      Li, Y. J.; Chen, S.; Zhang, S.; Li, Q. N.; Lu, G. L.; Li, W. X.; Liu, H.; Huang, X. Y. Polymer 2009, 50, 5192.  doi: 10.1016/j.polymer.2009.09.018

    77. [77]

      Wang, Q.; Yu, X.; Jin, J.; Wu, Y.; Liang, Y. Chin. J. Chem. 2018, 36, 223.  doi: 10.1002/cjoc.v36.3

    78. [78]

      Watanabe, Y.; Shibasaki, Y.; Ando, S.; Ueda, M. Polym J. 2006, 38, 79.  doi: 10.1295/polymj.38.79

    79. [79]

      Towery, D.; Fury, M. A. J. Electron. Mater. 1998, 27, 1088.  doi: 10.1007/s11664-998-0142-z

    80. [80]

      Tsuchiya, K.; Shibasaki, Y.; Aoyagi, M.; Ueda, M. Macromolecules 2006, 39, 3964.  doi: 10.1021/ma0521607

    81. [81]

      Niu, Y. M.; Zhu, X. L.; Liu, L. Z.; Zhang, Y.; Wang, G. B.; Jiang, Z. H. React. Funct. Polym. 2006, 66, 559.  doi: 10.1016/j.reactfunctpolym.2005.10.009

    82. [82]

      Dang, T. D.; Mather, P. T.; Alexander, M. D.; Grayson, C. J.; Houtz, M. D.; Spry, R. J.; Arnold, F. E. J. Polym. Sci. Polym. Chem. 2000, 38, 1991.  doi: 10.1002/(ISSN)1099-0518

    83. [83]

      Fukukawa, K.; Shibasakl, Y.; Ueda, M. Macromolecules 2004, 37, 8256.  doi: 10.1021/ma049063i

    84. [84]

      Su, Y. C.; Chang, F. C. Polymer 2003, 44, 7989.  doi: 10.1016/j.polymer.2003.10.026

    85. [85]

      Sharangpani, R.; Singh, R. Rev. Sci. Instrum. 1997, 68, 1564.  doi: 10.1063/1.1147926

    86. [86]

      Rosenmeyer, C. T.; Wu, H. MRS Proceedings 1996, 427, 463.  doi: 10.1557/PROC-427-463

    87. [87]

      Luo, Y. J.; Jin, K. K.; He, C. Q.; Wang, J. J.; Sun, J.; He, F. K.; Zhou, J. F.; Wang, Y. Q.; Fang, Q. Macromolecules 2016, 49, 7314.  doi: 10.1021/acs.macromol.6b01678

    88. [88]

      Wang, J. J.; Sun, J.; Zhou, J. F.; Jin, K. K.; Fang, Q. ACS Appl. Mater. Interfaces 2017, 9, 12782.  doi: 10.1021/acsami.7b01415

    89. [89]

      Wang, J. J.; Zhou, J. F.; Jin, K. K.; Wang, L.; Sun, J.; Fang, Q. Macromolecules 2017, 50, 9394.  doi: 10.1021/acs.macromol.7b02000

    90. [90]

      Zhao, Z.; Ni, H.; Han, Z.; Jiang, T.; Xu, Y.; Lu, X.; Ye, P. ACS Appl. Mater. Interfaces 2013, 5, 7808.  doi: 10.1021/am401568b

    91. [91]

      Cheng, Y. Acta Polym. Sinica 2017, 8, 1234.

    92. [92]

      Jha, S. K.; Mishra, V. K.; Sharma, D. K.; Damodaran, T. Rev. Environ. Contam. Toxicol. 2011, 211, 121.

    93. [93]

      Lau, C.; Butenhoff, J. L.; Rogers, J. M. Toxicol. Appl. Pharm. 2004, 198, 231.  doi: 10.1016/j.taap.2003.11.031

    94. [94]

      Dewitt, J. C.; Shnyra, A.; Badr, M. Z.; Loveless, S. E.; Hoban, D.; Frame, S. R.; Cunard, R.; Anderson, S. E.; Meade, B. J.; Peden-Adams, M. M.; Luebke, R. W.; Luster, M. I. Crit. Rev. Toxicol. 2009, 39, 76.  doi: 10.1080/10408440802209804

    95. [95]

      Younglai, E. V.; Wu, Y. J.; Foster, W. G. Curr. Pharm. Design 2007, 13, 3005.  doi: 10.2174/138161207782110499

    96. [96]

      Yao, W. Q.; Li, Y. J.; Huang, X. Y. Polymer 2014, 55, 6197.  doi: 10.1016/j.polymer.2014.09.036

    97. [97]

      Tong, L.; Shen, Z.; Zhang, S.; Li, Y. J.; Lu, G. L.; Huang, X. Y. Polymer 2008, 49, 4534.  doi: 10.1016/j.polymer.2008.08.033

    98. [98]

      Wang, X.; Cheng, W. G.; Yang, Q. Y.; Niu, H. Y.; Liu, Q.; Liu, Y.; Gao, M.; Xu, M.; Xu, A.; Liu, S. J.; Huang, X. Y.; Du, Y. G. J. Environ. Sci. 2018, 69, 217.  doi: 10.1016/j.jes.2017.10.014

  • 加载中
    1. [1]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    2. [2]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    3. [3]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    4. [4]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    5. [5]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    6. [6]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    7. [7]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    8. [8]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

    9. [9]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    10. [10]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    11. [11]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    12. [12]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    13. [13]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    14. [14]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    15. [15]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    16. [16]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    17. [17]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    18. [18]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    19. [19]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    20. [20]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

Metrics
  • PDF Downloads(34)
  • Abstract views(2046)
  • HTML views(512)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return