Citation: Song Xiaoning, Yang Shan, Wang Xin, Wang Mang. Difluorohomologization-Halogenation of Methyl Ketones: One-Pot Synthesis of β-Halo-α, α-Difluoroketones[J]. Acta Chimica Sinica, ;2018, 76(12): 983-987. doi: 10.6023/A18080337 shu

Difluorohomologization-Halogenation of Methyl Ketones: One-Pot Synthesis of β-Halo-α, α-Difluoroketones

  • Corresponding author: Wang Xin, wangm452@nenu.edu.cn Wang Mang, docxinwang@126.com
  • Received Date: 15 August 2018
    Available Online: 5 December 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21672032)the National Natural Science Foundation of China 21672032

Figures(2)

  • α, α-Difluoroketones represent an important subclass of organofluorine compounds, and have been widely applied in medicinal chemistry, particularly as enzyme inhibitors. Efficient use of organofluorine reagents plays a key role for the synthesis of fluorine-containing organic compounds. As an environmental and efficient difluorocarbene reagent, TMSCF2Br has been well utilized in synthetic applications. In 2013, Hu first utilized TMSCF2Br as a general difluorocarbene source for the difluoromethylenation of alkenes/alkynes as well as the difluoromethylation of O-, S-, N-, and P-nucleophiles. Moreover, Dilman realized the rapid assembly of various CF2-containing products by using TMSCF2Br as a difluorocarbene source, which depended on the concept of three independent components: difluorocarbene, nucleophile, and electrophile. Compared with the previous works, we recently reported a catalytic difluorocyclopropanation of enolizable ketones by using TMSCF2Br reagent, which acts as not only the difluorocarbene source but also the TMS transfer agent. The in situ generated siloxydifluorocyclopropanes were used for the synthesis of α-fluoroenones, o-fluoronaphthols, α, α-difluorocyclopentenones and α, α-difluorocyclopentanones compounds. Here, we report a simple and effective method for the conversion of enolizable ketones to α, α-difluoro-β-halo-substituted ketones. The whole process involves the in situ formation and regioselective ring opening halogenation of siloxydifluorocyclopropanes. The reaction features easily available raw materials, simple operation and practical method. A representative procedure for this reaction is as following: To a dried polytetrafluoroethene (PTFE) sealed pressure tube were added ketone 1 (0.5 mmol), n-Bu4NBr (0.05 mmol, 10 mol%), TMSCF2Br (0.75 mmol) and toluene (2.5 mL) in sequence. The reaction mixture was stirred at 110 ℃ for 2 h, followed by adding an additional amount of TMSCF2Br (0.5 mmol) for another 4 h. Removal of toluene under reduced pressure delivered a mixture mainly containing 2. The reaction system was allowed to cool to room temperature followed by adding NBS/NIS (0.75 mmol) and CH3CN (2 mL). The resulting mixture was stirred at room temperature for 2 h to consume 2 and then poured into saturated NaCl solution (30 mL), extracted with CH2Cl2 (10 mL×3). The combined organic extracts were dried over anhydrous MgSO4, filtered and concentrated under reduced pressure to yield the crude product, which was purified by silica gel chromatography (petroleum ether/ethyl acetate: 100/1, V/V) to afford the pure product 4/5.
  • 加载中
    1. [1]

      (a) Pattison, G. Eur. J. Org. Chem. 2018, 2018, 3520; (b) O'Hagan, D. Chem. Soc. Rev. 2008, 37, 308; (c) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320; (d) Gillis, E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.; Meanwell, N. A. J. Med. Chem. 2015, 58, 8315.

    2. [2]

      (a) Béguè, J.-P.; Bonnet-Delpon, D. Inhibition of Enzymes by Fluorinated Compounds. Bioorganic and Medicinal Chemistry of Fluorine, Wiley, Hoboken, NJ, 2008; Chapter 7, p. 246; (b) Ojima, I. Fluorine in Medicinal Chemistry and Chemical Biology, Wiley & Sons, Chichester, 2009; (c) Imperiali, B.; Abeles, R. H. Biochemistry 1986, 25, 3760; (d) Sham, H. L.; Wideburg, N. E.; Spanton, S. G.; Kohlbrenner, W. E.; Betebenner, D. A.; Kempf, D. J.; Norbeck, D. W.; Plattner, J. J.; Erickson, J. W. J. Chem. Soc., Chem. Commun. 1991, 110; (e) Giovani, S.; Penzo, M.; Brogi, S.; Brindisi, M.; Gemma, S.; Novellino, E.; Savini, L.; Blackman, M. J.; Campiani, G.; Butini, S. Bioorg. Med. Chem. Lett. 2014, 24, 3582.

    3. [3]

      (a) Han, C.; Salyer, A. E.; Kim, E. H.; Jiang, X.; Jarrard, R. E.; Powers, M. S.; Kirchhoff, A. M.; Salvador, T. K.; Chester, J. A.; Hockerman, G. H.; Colby, D. A. J. Med. Chem. 2013, 56, 2456; (b) Fah, C.; Hardegger, L. A.; Baitsch, L.; Schweizer, W. B.; Meyer, S.; Bur, D.; Diederich, F. Org. Biomol. Chem. 2009, 7, 3947; (c) Fah, C.; Hardegger, L. A.; Ebert, M.-O.; Schweizer, W. B.; Diederich, F. Chem. Commun. 2010, 46, 67.

    4. [4]

      The direct fluorination methods: (a) Verniest, G.; Van Hende, E.; Surmont, R.; De Kimpe, N. Org. Lett. 2006, 8, 4767; (b) Iacono, C. E.; Stephens, T. C.; Rajan, T. S.; Pattison, G. J. Am. Chem. Soc. 2018, 140, 2036; (c) Zupan, M.; Iskra, J.; Stavber, S. J. Org. Chem. 1995, 60, 259; (d) Ramírez, J.; Fernández, E. Tetrahedron Lett. 2007, 48, 3841.

    5. [5]

      Strategies based on already difluorinated building blocks: (a) Honraedt, A.; Van Der Lee, A.; Campagne, J. M.; Leclerc, E. Adv. Synth. Catal. 2017, 359, 2815; (b) Arimitsu, S.; Fernandez, B.; del Pozo, C.; Fustero, S.; Hammond, G. B. J. Org. Chem. 2008, 73, 2656; (c) Guo, C.; Wang, R.-W.; Qing, F.-L. J. Fluorine Chem. 2012, 143, 135; (d) Ge, S.; Chaładaj, W.; Hartwig, J. F. J. Am. Chem. Soc. 2014, 136, 4149; (e) Cao, C. R.; Jiang, M.; Liu, J. T. Eur. J. Org. Chem. 2015, 2015, 1144; (f) Xiao, Y. L.; Guo, W. H.; He, G. Z.; Pan, Q.; Zhang, X. Angew. Chem., Int. Ed. 2014, 53, 9909; (g) Zhao, H. Y.; Feng, Z.; Luo, Z.; Zhang, X. Angew. Chem., Int. Ed. 2016, 55, 10401; (h) Qu, C.; Xu, P.; Ma, W.; Cheng, Y.; Zhu, C. Chem. Commun. 2015, 51, 13508; (i) Adouama, C.; Keyrouz, R.; Pilet, G.; Monnereau, C.; Gueyrard, D.; Noel, T.; Medebielle, M. Chem. Commun. 2017, 53, 5653; (j) Yu, J. S.; Liu, Y. L.; Tang, J.; Wang, X.; Zhou, J. Angew. Chem., Int. Ed. 2014, 53, 9512; (k) Han, C.; Kim, E. H.; Colby, D. A. J. Am. Chem. Soc. 2011, 133, 5802; (l) Yang, M. H.; Orsi, D. L.; Altman, R. A. Angew. Chem., Int. Ed. 2015, 54, 2361.

    6. [6]

      (a) Ni, C.; Hu, J. Synthesis 2014, 46, 842; (b) Hu, J.; Zhang, W.; Wang, F. Chem. Commun. 2009, 7465; (c) Pan, X.-Y.; Zhao, Y.; Qu, H.-A.; Lin, J-H.; Hang, X.-C.; Xiao, J.-C. Org. Chem. Front. 2018, 5, 1452; (d) Zhang, Z.; Yu, W.; Zhou, Q.; Li, T.; Zhang, Y.; Wang, J. Chin. J. Chem. 2016, 34, 473.

    7. [7]

      (a) Kosobokov, M. D.; Dilman, A. D.; Levin, V. V.; Struchkova, M. I. J. Org. Chem. 2012, 77, 5850; (b) Dilman, A. D.; Levin, V. V. Acc. Chem. Res. 2018, 51, 1272.

    8. [8]

      (a) Wang, F.; Zhang, W.; Zhu, J.; Li, H.; Huang, K.; Hu, J. Chem. Commun. 2011, 47, 2411; (b) Li, L.; Wang, F.; Ni, C.; Hu, J. Angew. Chem., Int. Ed. 2013, 52, 12390; (c) Wang, W.; Yu, Q.; Zhang, Q.; Li, J.; Hui, F.; Yang, J.; Lv, J. Chin. J. Org. Chem. 2018, 38, 1569. (王为强, 余秦伟, 张前, 李江伟, 惠丰, 杨建明, 吕剑, 有机化学, 2018, 38, 1569.); (d) Deng, X., Lin, J.; Zheng, J.; Xiao, J. Chin. J. Chem. 2014, 32, 689.

    9. [9]

      (a) Xie, Q.; Ni, C.; Zhang, R.; Li, L.; Rong, J.; Hu, J. Angew. Chem., Int. Ed. 2017, 56, 1; (b) Hu, M.; Ni, C.; Li, L.; Han, Y.; Hu, J. J. Am. Chem. Soc. 2015, 137, 14496.

    10. [10]

      Zhang, Z.; Yu, W.; Wu, C.; Wang, C.; Zhang, Y.; Wang, J. Angew. Chem., Int. Ed. 2015, 54, 1.  doi: 10.1002/anie.201410930

    11. [11]

      (a) Levin, V. V.; Smirnov, V. O.; Struchkova, M. I.; Dilman, A. D. J. Org. Chem. 2015, 80, 9349; (b) Tsymbal, A. V.; Kosobokov, M. D.; Levin, V. V.; Struchkova, M. I.; Dilman, A. D. J. Org. Chem. 2014, 79, 7831; (c) Zemtsov, A. A.; Kondratyev, N, S.; Levin, V. V.; Struchkova, M. I.; Dilman, A. D. J. Org. Chem. 2014, 79, 818; (d) Smirnov, V. O.; Struchkova, M. I.; Arkhipov, D. E.; Korlyukov, A. A.; Dilman, A. D. J. Org. Chem. 2014, 79, 11819; (e) Levin, V. V.; Zemtsov, A. A.; Struchkova, M. I.; Dilman, A. D. Org. Lett. 2013, 15, 917; (f) Kosobokov, M. D.; Levin, V. V.; Struchkova, M. I.; Dilman, A. D. Org. Lett. 2014, 16, 3784; (g) Kosobokov, M. D.; Levin, V. V.; Struchkova, M. I.; Dilman, A. D. Org. Lett. 2015, 17, 760; (h) Fedorov, O. V.; Kosobokov, M. D.; Levin, V. V.; Struchkova, M. I.; Dilman, A. D. J. Org. Chem. 2015, 80, 5870; (i) Trifonov, A. L.; Zemtsov, A. A.; Levin, V. V.; Struchkova, M. I.; Dilman, A. D. Org. Lett. 2016, 18, 3458; (j) Trifonov, A. L.; Levin, V. V.; Struchkova, M. I.; Dilman, A. D. Org. Lett. 2017, 19, 5304; (k) Supranovich, V. I.; Levin, V. V.; Struchkova, M. I.; Korlyukov, A. A.; Dilman, A. D. Org. Lett. 2017, 19, 3215.

    12. [12]

      (a) Song, X.; Chang, J.; Zhu, D.; Li, J.; Xu, C.; Liu, Q.; Wang, M. Org. Lett. 2015, 17, 1712; (b) Chang, J.; Song, X.; Huang, W.; Zhu, D.; Wang, M. Chem. Commun. 2015, 51, 15362; (c) Chang, J.; Xu, C.; Gao, J.; Gao, F.; Zhu, D.; Wang, M. Org. Lett. 2017, 19, 1850; (d) Song, X.; Tian, S.; Zhao, Z.; Zhu, D.; Wang, M. Org. Lett. 2016, 18, 3414.

  • 加载中
    1. [1]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    2. [2]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    3. [3]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    4. [4]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    5. [5]

      Lihui Jiang Wanrong Dong Hua Yang Yongqing Xia Hongjian Peng Jun Yuan Xiaoqian Hu Zihan Zeng Yingping Zou Yiming Luo . Study on Extraction of p-Hydroxyacetophenone. University Chemistry, 2024, 39(11): 259-268. doi: 10.12461/PKU.DXHX202402056

    6. [6]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    7. [7]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    8. [8]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    9. [9]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    10. [10]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    11. [11]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    12. [12]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    13. [13]

      Shahua Huang Xiaoming Guo Lin Lin Guangping Chang Sheng Han Zuxin Zhou . Application of “Integration of Industry and Education” in Engineering Chemistry: Improvement of the Pesticide Fipronil Production. University Chemistry, 2024, 39(3): 199-204. doi: 10.3866/PKU.DXHX202309064

    14. [14]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    15. [15]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    16. [16]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    17. [17]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    18. [18]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    19. [19]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    20. [20]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

Metrics
  • PDF Downloads(10)
  • Abstract views(959)
  • HTML views(128)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return