Citation: He Shijiang, Pi Jingjing, Li Yan, Lu Xi, Fu Yao. Nickel-Catalyzed Suzuki-Type Cross Coupling of Fluorinated Alkenyl Boronates with Alkyl Halides[J]. Acta Chimica Sinica, ;2018, 76(12): 956-961. doi: 10.6023/A18080333 shu

Nickel-Catalyzed Suzuki-Type Cross Coupling of Fluorinated Alkenyl Boronates with Alkyl Halides

  • Corresponding author: Lu Xi, luxi@mail.ustc.edu.cn Fu Yao, fuyao@ustc.edu.cn
  • Received Date: 13 August 2018
    Available Online: 9 December 2018

    Fund Project: the National Natural Science Foundation of China 51821006the National Natural Science Foundation of China 21732006the National Natural Science Foundation of China 21702200Project supported by the National Natural Science Foundation of China (Nos. 21572212, 21732006, 21702200, 51821006), and Major Program of Development Foundation of Hefei Center for Physical Science and Technology (2017FXZY001)Major Program of Development Foundation of Hefei Center for Physical Science and Technology 2017FXZY001the National Natural Science Foundation of China 21572212

Figures(3)

  • The incorporation of fluorine atoms or fluorine-containing fragments to specifical sites of organic compounds would result in unique diversifications in biological or physical properties, such as, significantly regulate the lipid solubility or metabolic stability, and promote specific binding ability to biological targets of target compounds. Monofluoroalkenes are ideal amide bond mimics, and have been widely used in the research field of pharmaceutical chemistry and drug discovery. Previously, we reported the nickel-catalyzed reductive cross coupling of gem-difluoroalkenes with unactivated secondary alkyl iodides and tertiary alkyl bromides. However, only medium yield can be obtained with primary alkyl halides, which might be caused by the lower stability and nucleophilic activity of these substrates. Herein, we report the nickel-catalyzed Suzuki-type cross coupling of fluorinated alkenyl boronates with alkyl halides for the synthesis of primary alkyl group substituted monofluoroalkenes. By using NiBr2(diglyme) (10 mol%) and 4, 4'-di-tert-butyl-2, 2'-bipyridine (15 mol%) as catalytic systems, Na2CO3 (2 equiv.) as base, N, N-dimethylacetamide as solvent, we achieved the cross coupling of a variety of fluorinated alkenyl boronates with primary alkyl iodides (e.g., 5), bromides (e.g., 9) and relatively inert secondary alkyl bromide (20). Under the mild reaction conditions, this reaction performed smoothly with good isolated yields and well functional group toleration. Many synthetically useful functional groups could survive during the transformation, such as, ether (6, 7), trifluoromethyl (8), cyano (10), ester (11), and even unprotected alcohol hydroxyl group (13). In addition, heterocycles such as tetrahydrofuran (14), phthalimide (15), dioxane (16), indole (17), pyridine (27) and quinoline (35) also posed no problem for this reaction. It should be pointed out that, this reaction is applicable not only to non-activated alkyl halides, but also to the conversion of activated allyl bromides (18, 19). For the fluorinated alkenyl boronates, this reaction also exhibited good functional group compatibility and wide substrate scope, and conducted successfully with both electron-rich (e.g., 4, 24), electron-neutral (e.g., 21), or electron-deficient (e.g., 27, 31) aromatic rings. Finally, the toleration of aryl sulfonate (30) provided further opportunities for subsequent modification through transition-metal-catalyzed cross coupling reactions. Radical clock experiment with (Z)-8-iodooct-3-ene (36) provided a mixture of linear product (37a) and ring-cyclized product (37b). (Bromomethyl)cyclopropane (38) was also subjected to the standard reaction conditions, only ring-opening product (39a) was obtained. In addition, this reaction was significantly inhibited with the addition of TEMPO (2, 2, 6, 6-tetramethylpiperidinooxy). These results indicated a radical-type reaction mechanism for the cross coupling of fluorinated alkenyl boronates with alkyl halides. Further efforts would be devoted to develop one-pot synthesis of monofluoroalkenes through in-situ borylation of gem-difluoroalkenes and subsequent Suzuki-type cross coupling with alkyl halides.
  • 加载中
    1. [1]

      (a) Gao, B.; Zhao, Y.; Hu, J. Angew. Chem., Int. Ed. 2015, 54, 638. (b) Wu, X.; Xie, F.; Gridnev, I. D.; Zhang, W. Org. Lett. 2018, 20, 1638. (c) Wang, M.; Pu, X.; Zhao, Y.; Wang, P.; Li, Z.; Zhu, C.; Shi, Z. J. Am. Chem. Soc. 2018, 140, 9061. (d) Li, G.; Wang, T.; Fei, F.; Su, Y.-M.; Li, Y.; Lan, Q.; Wang, X.-S. Angew. Chem., Int. Ed. 2016, 55, 3491. (e) Gong, T.-J.; Xu, M.-Y.; Yu, S.-H.; Yu, C.-G.; Su, W.; Lu, X.; Xiao, B.; Fu, Y. Org. Lett. 2018, 20, 570. (f) Zheng, J.; Cai, J.; Lin, J.-H.; Guo, Y.; Xiao, J.-C. Chem. Commun. 2013, 49, 7513. (g) Sha, M.; Zhang, D.; Pan, R.; Xing, P.; Jiang, B. Acta Chim. Sinica 2015, 73, 395(in Chinese). (沙敏, 张丁, 潘仁明, 邢萍, 姜标, 化学学报, 2015, 73, 395.) (h) Gou, B.; Yang, C.; Zhang, L.; Xia, W. Acta Chim. Sinica 2017, 75, 66(in Chinese). (苟宝权, 杨超, 张磊, 夏吾炯, 化学学报, 2017, 75, 66.) (i) Zhang, P.; Lu, L.; Shen, Q. Acta Chim. Sinica 2017, 75, 744(in Chinese). (张盼盼, 吕龙, 沈其龙, 化学学报, 2017, 75, 744.) (j) Wang, J.; Li, F.; Xu, Y.; Wang, J.; Wu, Z.; Yang, C.; Liu, L. Chin. J. Org. Chem. 2018, 38, 1155. (k) Wang, Q.; Gao, K.; Zou, J.; Zeng, R. Chin. J. Org. Chem. 2018, 38, 863(in Chinese). (王清, 高克成, 邹建平, 曾润生, 有机化学, 2018, 38, 863.) (l) Wang, D.; Yuan, Z.; Liu, Q.; Chen, P.; Liu, G. Chin. J. Chem. 2018, 36, 507.

    2. [2]

      (a) Hu, M.; He, Z.; Gao, B.; Li, L.; Ni, C.; Hu, J. J. Am. Chem. Soc. 2013, 135, 17302. (b) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881. (c) Zhou, N.; Xu, P.; Li, W.; Cheng, Y.; Zhu, C. Acta Chim. Sinica 2017, 75, 60(in Chinese). (周能能, 胥攀, 李伟鹏, 成义祥, 朱成建, 化学学报, 2017, 75, 60.) (d) Rong, J.; Ni, C.; Wang, Y.; Kuang, C.; Gu, Y.; Hu, J. Acta Chim. Sinica 2017, 75, 105(in Chinese). (荣健, 倪传法, 王云泽, 匡翠文, 顾玉诚, 胡金波, 化学学报, 2017, 75, 105.) (e) Sun, X.; Wang, W.; Ma, J.; Yu, S. Acta Chim. Sinica 2017, 75, 115(in Chinese). (孙晓阳, 王文敏, 马晶, 俞寿云, 化学学报, 2017, 75, 115.) (f) Xu, J.; Chen, P.; Ye, J.; Liu, G. Acta Chim. Sinica 2015, 73, 1294(in Chinese). (徐佳斌, 陈品红, 叶金星, 刘国生, 化学学报, 2015, 73, 1294.) (g) Zhao, X.; Li, T.; Tian, M.; Su, Z.; Wei, A.; Lu, K. Chin. J. Org. Chem. 2018, 38, 677. (h) Liu, L.; Huang, D.; Wang, Y.; Wen, L.; Yang, Z.; Su, Y.; Wang, K.; Hu, Y. Chin. J. Org. Chem. 2018, 38, 1469. (i) Liu, Q.; Hu, X. Chin. J. Org. Chem. 2018, 38, 1525. (j) Gu, Y.; Lu, C.; Gu, Y.; Shen, Q. Chin. J. Chem. 2018, 36, 55. (k) Fu, X.-P.; Xiao, Y.-L.; Zhang, X. Chin. J. Chem. 2018, 36, 143. (l) Shi, H.; Lai, B.; Chen, S.; Zhou, X.; Nie, J.; Ma, J.-A. Chin. J. Chem. 2017, 35, 1693.

    3. [3]

      (a) Okoromoba, O. E.; Han, J.; Hammond, G. B.; Xu, B. J. Am. Chem. Soc. 2014, 136, 14381. (b) Dutheuil, G.; Couve-Bonnaire, S.; Pannecoucke, X. Angew. Chem., Int. Ed. 2007, 46, 1290. (c) Liu, T.-L.; Wu, J. E.; Zhao, Y. Chem. Sci. 2017, 8, 3885. (d) Jakobsche, C. E.; Peris, G.; Miller, S. J. Angew. Chem., Int. Ed. 2008, 47, 6707. (e) Sommer, H.; Fürstner, A. Chem. Eur. J. 2017, 23, 558.

    4. [4]

      (a) Daubresse, N.; Chupeau, Y.; Francesch, C.; Lapierre, C.; Pollet, B.; Rolando, C. Chem. Commun. 1997, 1489. (b) Chen, C. Y.-C. J. Taiwan Inst. Chem. Eng. 2009, 40, 155. (c) Haidoune, M. B.; Raynaud, I.; O'Connor, N.; Richomme, P.; Mornet, R.; Laloue, M. J. Agric. Food Chem. 1998, 46, 1577. (d) Lin, J.; Toscano, P. J.; Welch, J. T. Proc. Natl. Acad. Sci. U. S. A. 1998, 95, 14020. (e) Van der Veken, P.; Senten, K.; Kertèsz, I.; De Meester, I.; Lambeir, A.-M.; Maes, M.-B.; Scharpé, S.; Haemers, A.; Augustyns, K. J. Med. Chem. 2005, 48, 1768. (f) Liu, Q.; Shen, X.; Ni, C.; Hu, J. Angew. Chem., Int. Ed. 2017, 56, 619. (g) Lu, X.; He, S.-J.; Cheng, W.-M.; Shi, J. Chin. Chem. Lett. 2018, 29, 1001.

    5. [5]

      (a) Zhang, X.; Cao, S. Tetrahedron Lett. 2017, 58, 375. (b) Novikov, M. A.; Nefedov, O. M. Org. Biomol. Chem. 2018, 16, 4963. (c) Yokota, M.; Fujita, D.; Ichikawa, J. Org. Lett. 2007, 9, 4639. (d) Takachi, M.; Kita, Y.; Tobisu, M.; Fukumoto, Y.; Chatani, N. Angew. Chem., Int. Ed. 2010, 49, 8717. (e) Xu, L.; Zhang, Q.; Xie, Q.; Huang, B.; Dai, J.-J.; Xu, J.; Xu, H.-J. Chem. Commun. 2018, 54, 4406. (f) Zhao, Y.; Jiang, F.; Hu, J. J. Am. Chem. Soc. 2015, 137, 5199. (g) Kojima, R.; Kubota, K.; Ito, H. Chem. Commun. 2017, 53, 10688.

    6. [6]

      (a) Zhang, X.; Lin, Y.; Zhang, J.; Cao, S. RSC Adv. 2015, 5, 7905. (b) Zell, D.; Dhawa, U.; Müller, V.; Bursch, M.; Grimme, S.; Ackermann, L. ACS Catal. 2017, 7, 4209. (c) Sakaguchi, H.; Uetake, Y.; Ohashi, M.; Niwa, T.; Ogoshi, S.; Hosoya, T. J. Am. Chem. Soc. 2017, 139, 12855. (d) Tan, D.-H.; Lin, E.; Ji, W.-W.; Zeng, Y.-F.; Fan, W.-X.; Li, Q.; Gao, H.; Wang, H. Adv. Synth. Catal. 2018, 360, 1032. (e) Hayashi, S.-i.; Nakai, T.; Ishikawa, N. Chem. Lett. 1980, 9, 935. (f) Zhang, B.; Zhang, X.; Hao, J.; Yang, C. Org. Lett. 2017, 19, 1780. (g) Fuchibe, K.; Mayumi, Y.; Zhao, N.; Watanabe, S.; Yokota, M.; Ichikawa, J. Angew. Chem., Int. Ed. 2013, 52, 7825. (h) Ichitsuka, T.; Fujita, T.; Arita, T.; Ichikawa, J. Angew. Chem., Int. Ed. 2014, 53, 7564. (i) Sakaguchi, H.; Ohashi, M.; Ogoshi, S. Angew. Chem., Int. Ed. 2018, 57, 328. (j) Cong, Z.-S.; Li, Y.-G.; Chen, L.; Xing, F.; Du, G.-F.; Gu, C.-Z.; He, L. Org. Biomol. Chem. 2017, 15, 3863. (k) Xiong, Y.; Huang, T.; Ji, X.; Wu, J.; Cao, S. Org. Biomol. Chem. 2015, 13, 7389. (l) Dai, W.; Shi, H.; Zhao, X.; Cao, S. Org. Lett. 2016, 18, 4284. (m) Yang, L.; Ji, W.-W.; Lin, E.; Li, J.-L.; Fan, W.-X.; Li, Q.; Wang, H. Org. Lett. 2018, 20, 1924. (n) Li, J.; Lefebvre, Q.; Yang, H.; Zhao, Y.; Fu, H. Chem. Commun. 2017, 53, 10299. (o) Xing, B.; Ni, C.; Hu, J. Chin. J. Chem. 2018, 36, 206. (p) Zhang, Z.; Zhou, Q.; Yu, W.; Li, T.; Zhang, Y.; Wang, J. Chin. J. Chem. 2017, 35, 387.

    7. [7]

      Tian, P.; Feng, C.; Loh, T.-P. Nat. Commun. 2015, 6, 7472.  doi: 10.1038/ncomms8472

    8. [8]

      (a) Kong, L.; Zhou, X.; Li, X. Org. Lett. 2016, 18, 6320. (b) Wu, J.-Q.; Zhang, S.-S.; Gao, H.; Qi, Z.; Zhou, C.-J.; Ji, W.-W.; Liu, Y.; Chen, Y.; Li, Q.; Li, X.; Wang, H. J. Am. Chem. Soc. 2017, 139, 3537. (c) Ji, W.-W.; Lin, E.; Li, Q.; Wang, H. Chem. Commun. 2017, 53, 5665.

    9. [9]

      Xie, J.; Yu, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem., Int. Ed. 2016, 55, 9416.  doi: 10.1002/anie.201602347

    10. [10]

      Thornbury, R. T.; Toste, F. D. Angew. Chem., Int. Ed. 2016, 55, 11629.  doi: 10.1002/anie.201605651

    11. [11]

      Zhang, J.; Dai, W.; Liu, Q.; Cao, S. Org. Lett. 2017, 19, 3283.  doi: 10.1021/acs.orglett.7b01430

    12. [12]

      Hu, J.; Han, X.; Yuan, Y.; Shi, Z. Angew. Chem., Int. Ed. 2017, 56, 13342.  doi: 10.1002/anie.201708224

    13. [13]

      (a) Lu, X.; Wang, Y.; Zhang, B.; Pi, J.-J.; Wang, X.-X.; Gong, T.-J.; Xiao, B.; Fu, Y. J. Am. Chem. Soc. 2017, 139, 12632. (b) Xu, J.; Ahmed, E.-A.; Xiao, B.; Lu, Q.-Q.; Wang, Y.-L.; Yu, C.-G.; Fu, Y. Angew. Chem., Int. Ed. 2015, 54, 8231. (c) Xu, J.; Fu, Y.; Luo, D.-F.; Jiang, Y.-Y.; Xiao, B.; Liu, Z.-J.; Gong, T.-J.; Liu, L. J. Am. Chem. Soc. 2011, 133, 15300.

    14. [14]

      (a) Lu, X.; Xiao, B.; Zhang, Z.; Gong, T.; Su, W.; Yi, J.; Fu, Y.; Liu, L. Nat. Commun. 2016, 7, 11129. (b) Lu, X. Ph.D. Dissertation, University of Science and Technology of China, Hefei, 2016(in Chinese). (陆熹, 博士论文, 中国科学技术大学, 合肥, 2016.) (c) Xiao, Y.; Pan, Q.; Zhang, X. Acta Chim. Sinica 2015, 73, 383(in Chinese). (肖玉兰, 潘强, 张新刚, 化学学报, 2015, 73, 383.) (d) Xu, J.; Xiao, B.; Xie, C.-Q.; Luo, D.-F.; Liu, L.; Fu, Y. Angew. Chem., Int. Ed. 2012, 51, 12551.

    15. [15]

      Lu, X.; Xiao, B.; Liu, L.; Fu, Y. Chem. Eur. J. 2016, 22, 11161.  doi: 10.1002/chem.201602486

    16. [16]

      Yi, J.; Lu, X.; Sun, Y.-Y.; Xiao, B.; Liu, L. Angew. Chem., Int. Ed. 2013, 52, 12409.  doi: 10.1002/anie.201307069

    17. [17]

      (a) González-Bobes, F.; Fu, G. C. J. Am. Chem. Soc. 2006, 128, 5360. (b) Zultanski, S. L.; Fu, G. C. J. Am. Chem. Soc. 2013, 135, 624. (c) Zhou, J.; Fu, G. C. J. Am. Chem. Soc. 2004, 126, 1340.

  • 加载中
    1. [1]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    2. [2]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    3. [3]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    4. [4]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    5. [5]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    6. [6]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    7. [7]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    8. [8]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    9. [9]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    10. [10]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    11. [11]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    12. [12]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    13. [13]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    14. [14]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    15. [15]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    16. [16]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    17. [17]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    18. [18]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    19. [19]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    20. [20]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

Metrics
  • PDF Downloads(27)
  • Abstract views(1593)
  • HTML views(366)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return