Citation: Liu Qingyun, Zhao Xianghu, Li Jialu, Cao Song. Synthesis of Cyanated Difluorostyrene Derivatives via SN2' Cyanomethylation of α-(Trifluoromethyl)styrenes with Acetonitrile[J]. Acta Chimica Sinica, ;2018, 76(12): 945-950. doi: 10.6023/A18080322 shu

Synthesis of Cyanated Difluorostyrene Derivatives via SN2' Cyanomethylation of α-(Trifluoromethyl)styrenes with Acetonitrile

  • Corresponding author: Cao Song, scao@ecust.edu.cn
  • Received Date: 7 August 2018
    Available Online: 14 December 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21472043, 21272070)the National Natural Science Foundation of China 21272070the National Natural Science Foundation of China 21472043

Figures(4)

  • Nitriles are important structural motifs found in agrochemicals, pharmaceuticals, and natural products. Furthermore, nitriles are versatile synthetic precursors for organic synthesis because they can be easily converted into various functionalities, such as amides, ketones, esters, primary amines, aldehydes, carboxylic acids, and nitrogen-containing heterocycles. Therefore, the development of efficient methods for the synthesis of nitrile compounds has attracted much attention from synthetic chemists. Cyanomethylation of various substrates is a synthetically useful reaction because a variety of diversely cyano-containing compounds could be readily prepared. Acetonitrile is the simplest commercially available alkyl nitrile, which can act as the cyanomethyl carbanion source. The traditional method for the cyanomethylation of organic molecules is deprotonation of acetonitrile in the presence of strong base. Alternatively, transition-metal-catalyzed C—H bond activation of acetonitrile represents an attractive approach to cyanomethylated compounds due to its atom and step economy. In this communication, we developed a simple and highly efficient method for the synthesis of cyanated difluorostyrene derivatives by cyanomethylation of α-(trifluoromethyl)styrenes using cheap and commercially available acetonitrile as the CH2CN- source. The reaction proceeded smoothly in the presence of LiHMDS at room temperature and was finished within 1 h, affording the cyanated gem-difluoroalkenes in moderate to good yields. Furthermore, the cyanomethylation reaction exhibited good substrate scope and functional group compatibility. A general procedure for the cyanomethylation of α-(trifluoromethyl)styrenes with acetonitrile is as following: α-(trifluoromethyl)styrenes 1 (0.5 mmol) was dissolved in acetonitrile 2a (4 mL) at room temperature under argon atmosphere. Subsequently, a solution of the LiHMDS in THF (1.5 mL, 1.0 mol/L, 1.5 mmol, 3.0 equiv.) was added dropwise within 50 min and stirring was continued for further 10 min (monitored by TLC). After completion of the reaction, the reaction mixture was quenched with saturated aqueous solution of NH4Cl (15 mL) and extracted with ethyl acetate (5 mL×3). The combined organic layer was dried over anhydrous Na2SO4, filtered, and concentrated under vacuum. The crude residue was then purified by column chromatography on silica gel [(V(hexane)/V(ethyl acetate)=10:1~6:1] directly to afford the pure target compounds.
  • 加载中
    1. [1]

      (a) Wang, J.; Liu, H. Chin. J. Org. Chem. 2012, 32, 1643. (王江, 柳红, 有机化学, 2012, 32, 1643.); (b) Powell, K. J.; Han, L.-C.; Sharma, P.; Moses, J. E. Org. Lett. 2014, 16, 2158.

    2. [2]

      (a) Rappoport, Z. The Chemistry of the Cyano Group, Interscience Publishers, London, 1970; (b) Larock, R. C. Comprehensive Organic Transformations: A Guide to Functional Group Preparation, 2nd ed., Wiley-VCH, Weinheim, 1999, p. 821; (c) Ishii, G.; Harigae, R.; Moriyama, K.; Togo, H. Tetrahedron 2013, 69, 1462; (d) Ma, X.-T.; Li, B.; Xiao, Y.-L.; Yu, X.-C.; Su, C.-L.; Xu, Q. Chin. J. Org. Chem. 2017, 37, 2034. (马献涛, 李波, 肖映林, 余小春, 苏陈良, 徐清, 有机化学, 2017, 37, 2034.).

    3. [3]

      (a) McManus, J. B.; Nicewicz, D. A. J. Am. Chem. Soc. 2017, 139, 2880; (b) Wen, Q.-D.; Jin, J.-S.; Zhang, L.-P.; Luo, Y.; Lu, P.; Wang, Y.-G. Tetrahedron Lett. 2014, 55, 1271; (c) Anbarasan, P.; Schareina, T.; Beller, M. Chem. Soc. Rev. 2011, 40, 5049; (d) Ye, X.; Zeng, X.-P.; Zhou, J. Acta Chim. Sinica 2016, 74, 984. (叶旭, 曾兴平, 周剑, 化学学报, 2016, 74, 984.); (e) Zhou, Q.-Q.; Liu, D.; Xiao, W.-J.; Lu, L.-Q. Acta Chim. Sinica 2017, 75, 110. (周泉泉, 刘丹, 肖文精, 陆良秋, 化学学报, 2017, 75, 110.); (f) Li, Z.-L.; Sun, K.-K.; Cai, C. Org. Chem. Front. 2018, 5, 1848; (g) Li, J.-P.; Yin, J.-H.; Yu, C.; Zhang, W.-X.; Xi, Z.-F. Acta Chim. Sinica 2017, 75, 733. (李嘉鹏, 殷剑昊, 俞超, 张文雄, 席振峰, 化学学报, 2017, 75, 733.); (h) Zhang, W.; Hu, C.-X.; Zhou, X.-G. Chin. J. Org. Chem. 2017, 37, 1246. (张伟, 胡晨旭, 周向葛, 有机化学, 2017, 37, 1246.).

    4. [4]

      (a) López, R.; Palomo, C. Angew. Chem. Int. Ed. 2015, 54, 13170; (b) Zhong, S.-S.; Huang, P.; Wang, X.-Y.; Lin, M.; Ge, C.-H. Chin. J. Org. Chem. 2018, 38, 1199. (仲帅帅, 黄鹏, 王兴越, 林觅, 葛春华, 有机化学, 2018, 38, 1199.); (c) Wang, H.-J.; Zhou, X.-X.; Xia, H.-P. Chin. J. Chem. 2018, 36, 93; (d) Ao, Y.-F.; Wang, Q.-Q.; Wang, D.-X. Chin. J. Org. Chem. 2016, 36, 2333. (敖宇飞, 王其强, 王德先, 有机化学, 2016, 36, 2333.).

    5. [5]

      (a) Forslund, K.; Morant, M.; J rgensen, B.; Olsen, C. E.; Asamizu, E.; Sato, S.; Tabata, S.; Bak, S. Plant Physiol. 2004, 135, 71; (b) Fleming, F. F.; Yao, L.-H.; Ravikumar, P. C.; Funk, L.; Shook, B. C. J. Med. Chem. 2010, 53, 7902.

    6. [6]

      Fatiadi, A. J. In The Chemistry of Functional Groups, Supplement C: The Chemistry of Triple-Bonded Functional Groups, Part 2, Eds.: Pappoport, Z.; Patai, S., Wiley, London, 1983, p. 1057.

    7. [7]

      (a) Ni, Z.-Q.; Huang, X.; Wang, J.-C.; Pan, Y.-J. RSC Adv. 2016, 6, 522; (b) Yu, Y.-L.; Zhuang, S.-Y.; Liu, P.; Sun, P.-P. J. Org. Chem. 2016, 81, 11489; (c) Zhang, J.; Wu, W.; Ji, X.-F.; Cao, S. RSC Adv. 2015, 5, 20562.

    8. [8]

      (a) Shen, J.-X.; Yang, D.-J.; Liu, Y.-X.; Qin, S.-S.; Zhang, J.-W.; Sun, J.-K.; Liu, C.-H.; Liu, C.-Y.; Zhao, X.-M.; Chu, C.-H.; Liu, R.-H. Org. Lett. 2014, 16, 350; (b) Ariafard, A.; Ghari, H.; Khaledi, Y.; Bagi, A. H.; Wierenga, T. S.; Gardiner, M. G.; Canty, A. J. ACS Catal. 2016, 6, 60; (c) Satoh, Y.; Obora, Y. RSC Adv. 2014, 4, 15736; (d) Qiao, K.; Zhang, D.; Zhang, K.; Yuan, X.; Zheng, M.-W.; Guo, T.-F.; Fang, Z.; Wan, L.; Guo, K. Org. Chem. Front. 2018, 5, 1129; (e) Deng, T.; Wang, H.-J.; Cai, C. Eur. J. Org. Chem. 2014, 7259; (f) Voskressensky, L. G.; Festa, A. A.; Storozhenko, O. A.; Le, T. A.; Nguyen, V. T.; Varlamov, A. V. RSC Adv. 2015, 5, 12442.

    9. [9]

      (a) Zhang, W.; Yang, S.-P.; Shen, Z.-M. Adv. Synth. Catal. 2016, 358, 2392; (b) Liu, Y.-B.; Yang, K.; Ge, H.-B. Chem. Sci. 2016, 7, 2804; (c) Zhang, Y.-X.; Yan, W.-T.; Wang, Y.-K.; Weng, Z.-Q. Org. Lett. 2017, 19, 5478; (d) Hoff, B. H. Synthesis 2018, 50, 2824; (e) Rossi, L.; Feroci, M.; Inesi, A. Mini-Reviews Org. Chem. 2005, 2, 79; (f) Wu, Q.; Li, Y.-B.; Wang, C.-Y.; Zhang, J.-Y.; Huang, M.-M.; Kim, J. K.; Wu, Y.-J. Org. Chem. Front. 2018, 5, 2496.

    10. [10]

      Kumagai, N.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2004, 126, 13632.  doi: 10.1021/ja0450509

    11. [11]

      (a) Kaiser, E. M.; Hauser, C. R. J. Org. Chem. 1968, 33, 3402; (b) Mamuye, A. D.; Castoldi, L.; Azzena, U.; Holzer, W.; Pace, V. Org. Biomol. Chem. 2015, 13, 1969.

    12. [12]

      (a) Ko, E. Y.; Lim, C. H.; Chung, K. H. Bull. Korean Chem. Soc. 2006, 27, 432; (b) Guranova, N. I.; Varlamov, A. V.; Ilyushenkova, V. V.; Sokolova, E. A.; Borisova, T. N.; Aksenov, A. V.; Khrustalev, V. N.; Voskressensky, L. G. Mendeleev Commun. 2017, 27, 506.

    13. [13]

      Gao, X.-S.; Dong, W.-H.; Hu, B.; Gao, H.; Yuan, Y.; Xie, X.-M.; Zhang, Z.-G. RSC Adv. 2017, 7, 49299.  doi: 10.1039/C7RA10090F

    14. [14]

      Rao, V. N. B.; Kumar, K.; Singh, R. P. Org. Biomol. Chem. 2015, 13, 9755.  doi: 10.1039/C5OB01560J

    15. [15]

      Gajulapalli, V. P. R.; Vinayagam, P.; Kesavan, V. Org. Biomol. Chem. 2014, 12, 4186.  doi: 10.1039/c4ob00271g

    16. [16]

      Velcicky, J.; Soicke, A.; Steiner, R.; Schmalz, H. J. J. Am. Chem. Soc. 2011, 133, 6948.  doi: 10.1021/ja201743j

    17. [17]

      (a) Wang, K.-C; Chen, X.; Yuan, M.; Yao, M.; Zhu, H.-C.; Xue, Y.-B.; Luo, Z.-W.; Zhang, Y.-H. J. Org. Chem. 2018, 83, 1525; (b) Wu, T.; Mu, X.; Liu, G.-S. Angew. Chem. 2011, 123, 12786.

    18. [18]

      (a) Anxionnat, B.; Pardo, D. G.; Ricci, G.; Cossy, J. Org. Lett. 2011, 13, 4084; (b) Wang, G.-W.; Zhou, A.-X.; Wang, J.-J.; Hu, R.-B.; Yang, S.-D. Org. Lett. 2013, 15, 5270; (c) Tang, S.; Li, S.-H.; Li, Z.-H.; Zhou, D.; Sheng, R.-L. Tetrahedron Lett. 2015, 56, 1423; (d) Kumagai, N.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2004, 126, 13632.

    19. [19]

      (a) Chelucci, G. Chem. Rev. 2012, 112, 1344; (b) Amii, H.; Uneyama, K. Chem. Rev. 2009, 109, 2119; (c) Zhang, W.-G.; Wang, Y. Tetrahedron Lett. 2018, 59, 1301.

    20. [20]

      (a) Zhang, X.-X.; Cao, S. Tetrahedron Lett. 2017, 58, 375; (b) Liu, Y.; Deng, M.-M.; Zhang, Z.-Y.; Ding, X.-H.; Dai, Z.-Q.; Guan, J.-T. Chin. J. Org. Chem. 2012, 32, 661. (刘运, 邓萌萌, 张智勇, 丁肖华, 戴志群, 关金涛, 有机化学, 2012, 32, 661.).

    21. [21]

      (a) Zhang, Z.-K.; Zhou, Q.; Yu, W.-Z.; Li, T.-J.; Wu, G.-J; Zhang, Y.; Wang, J.-B. Org. Lett. 2015, 17, 2474; (b) Ichitsuka, T.; Fujita, T.; Ichikawa, J. ACS Catal. 2015, 5, 5947; (c) Li, C.-P.; Zhang, D.-Y.; Zhu, W.; Wan, P.-H.; Liu, H. Org. Chem. Front. 2016, 3, 1080; (d) Liu, Y.; Zhou, Y.-H.; Zhao, Y.-L.; Qu, J.-P. Org. Lett. 2017, 19, 946; (e) Dai, W.-P.; Lin, Y.-Y.; Wan, Y.; Cao, S. Org. Chem. Front. 2018, 5, 55; (f) Wu, X.-T.; Xie, F.; Gridnev, I. D.; Zhang, W.-B. Org. Lett. 2018, 20, 1638; (g) Ji, X.-F.; Liu, Y.-S.; Shi, H.-Y.; Cao, S. Tetrahedron 2018, 74, 4155; (h) Kojima, R.; Akiyama, S.; Ito, H. Angew. Chem., Int. Ed. 2018, 57, 7196; (i) Hu, M.-Y.; Ni, C.-F.; Li, L.-C.; Han, Y.-X.; Hu, J.-B. J. Am. Chem. Soc. 2015, 137, 14496; (j) Fuchibe, K.; Takahashi, M.; Ichikawa, J. Angew. Chem., Int. Ed. 2012, 51, 12059.

    22. [22]

      (a) Fuchibe, K.; Jyono, H.; Fujiwara, M.; Kudo, T.; Yokota, M.; Ichikawa, J. Chem. Eur. J. 2011, 17, 12175; (b) Li, L.-Y.; Xiao, T.-B.; Chen, H.-G.; Zhou, L. Chem. Eur. J. 2017, 23, 2249; (c) Fuchibe, K.; Hatta, H.; Oh, K.; Oki, R.; Ichikawa, J. Angew. Chem., Int. Ed. 2017, 56, 5890; (d) Zhang, Z.-K.; Yu, W.-Z.; Zhou, Q.; Li, T.-J.; Zhang, Y.; Wang, J.-B. Chin. J. Chem. 2016, 34, 473; (e) Zhang, Z.-K.; Zhou, Q.; Yu, W.-Z.; Li, T.-J.; Zhang, Y.; Wang, J.-B. Chin. J. Chem. 2017, 35, 387.

    23. [23]

      Bordwell, F. G. Acc. Chem. Res. 1988, 21, 456.  doi: 10.1021/ar00156a004

  • 加载中
    1. [1]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    2. [2]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    3. [3]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    4. [4]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    5. [5]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    6. [6]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    7. [7]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    8. [8]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    9. [9]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    10. [10]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    11. [11]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    12. [12]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    13. [13]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    14. [14]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    15. [15]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    16. [16]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    17. [17]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    18. [18]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    19. [19]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    20. [20]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

Metrics
  • PDF Downloads(27)
  • Abstract views(1599)
  • HTML views(261)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return