Citation: Song Zhidong, Jiang Lvqi, Yi Wenbin. Fluorodecarboxylation of β, γ-Unsaturated Carboxylic Acids Using Trivalent Iodine and Hydrofluoric Acid-Based Fluorination Reagent[J]. Acta Chimica Sinica, ;2018, 76(12): 967-971. doi: 10.6023/A18080321 shu

Fluorodecarboxylation of β, γ-Unsaturated Carboxylic Acids Using Trivalent Iodine and Hydrofluoric Acid-Based Fluorination Reagent

  • Corresponding author: Yi Wenbin, yiwb@njust.edu.cn
  • Received Date: 7 August 2018
    Available Online: 19 December 2018

    Fund Project: the National Natural Science Foundation of China 21476116Natural Science Foundation of Jiangsu Province BK20180476Priority Academic Program Development of Jiangsu Higher Education Institutions  the National Natural Science Foundation of China 21776138Fundamental Research Funds for the Central Universities 30916011102Fundamental Research Funds for the Central Universities 30918011314Qing Lan and Six Talent Peaks in Jiangsu Province  Project supported by the National Natural Science Foundation of China (Nos. 21776138, 21476116), Fundamental Research Funds for the Central Universities (Nos. 30916011102, 30918011314), Natural Science Foundation of Jiangsu Province (BK20180476), Qing Lan and Six Talent Peaks in Jiangsu Province, Priority Academic Program Development of Jiangsu Higher Education Institutions

Figures(5)

  • Allylic-substituted compounds serve as versatile building block or the primer for many metal-catalyzed reactions. The introduction of fluorine into a drug molecule will change its pharmacokinetic and pharmacodynamic properties. Therefore, a new method of allylic fluorination would uncover novel synthetic approaches towards highly valuable fluorinated compounds such as inhibitors or fluorine-containing polypropylene. To date, the most reported methods for the synthesis of allylic fluoride involve the use of p-nitrobenzoate or trimethylsilyl as leaving group, or cleavage of tertiary cyclopropyl silyl ethers. In the past decades, the research of fluorodecarboxylation has made great progress. The most reported fluorodecarboxylations involving XeF2, AgF or AgF2, Selectfluor, N-fluorodibenzenesulfonimide (NFSI) are often accompanied by the occurrence of oxidation or free radical reactions, which may destroy the terminal olefin structure. The use of the fluoride ion (fluoride salt or hydrofluoric acid) as the nucleophilic component presents a series of challenges, including the low intrinsic nucleophilicity which was demonstrated by its frequent use as an additive to modulate catalytic reactivity or product distribution. However, with the assistance of transition-metal catalyst or organocatalysts, fluoride ion often serve as fluorine source for fluorination of C(sp2)―H and C(sp3)―H. Hypervalent iodine reagents, which have ability to activate a C―C multiple bond, have been recognized as an alternative to noble metal catalyst. Inspired by the pioneering exploration, we sought the possibility of achieving allylic fluorination through simple protocol of fluorodecarboxylation with cheap nucleophilic fluorination reagents and mild oxidant. In this work, a new strategy is introduced for the synthesis of allylic fluorides via decarboxylative fluorination of β, γ-unsaturated carboxylic acids using PhI(OAc)2 and TEA·3HF. The best result was achieved by using 1.2 equiv. of PhI(OAc)2 and 5 equiv. of TEA·3HF in CH2Cl2 at 75 ℃ for 12 h, giving allylic fluoride 2a in 76% yield. The versatile synthetic utilities of the allylic fluorides were also developed through cycloaddition, oxidation, reduction, substitution involving formation of C―O, C―S, C―Se and C―N bond via activation of C―F bond.
  • 加载中
    1. [1]

      (a) Singh, O. V.; Han, H. Org. Lett. 2007, 9, 4801; (b) Mizuno, S.; Terasaki, S.; Shinozawa, T.; Kawatsura, M. Org. Lett. 2017, 19, 504. (c) Wu, R. H.; Yang, W.; Cheng, G.; Li, Y.; Yang, D. Q. Chinese J. Org. Chem. 2016, 36, 2368(in Chinese). (仵瑞华, 杨文, 程果, 李玥, 杨定乔, 有机化学, 2016, 36, 2368); (d) Chen, C. H.; Fu, L.; Chen, P. H.; Liu, G. S. Chin. J. Chem. 2017, 35, 1781; (e) Gu, Y.; Lu, C.; Gu, Y.; Shen, Q. Chin. J. Chem. 2018, 36, 55.

    2. [2]

      (a) Kirsch, P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications, Wiley-VCH, Weinheim, Germany, 2004; (b) Hiyama, T. Organofluorine Compounds: Chemistry and Applications, Springer, Berlin, 2000; (c) Uneyama, K. Organofluorine Chemistry, Blackwell, Oxford, U.K., 2006; (d) Richard, C. Fluorine in Organic Chemistry, CRC Press, Boca Raton, FL, 2004.

    3. [3]

      (a) Honda, T.; Liby, K. T.; Su, X.; Sundararajan, C.; Honda, Y.; Suh, N.; Risingsong, R.; Williams, C. R.; Royce, D. B.; Sporn, M. B.; Gribble, G. W. Bioorg. Med. Chem. Lett. 2006, 16, 6306; (b) Kaneko, S.; Arai, M.; Uchida, T.; Harasaki, T.; Fukuoka, T.; Konosu, T. Bioorg. Med. Chem. Lett. 2002, 12, 1705; (c) Rothman, S. C.; Johnston, J. B.; Lee, S.; Walker, J. R.; Poulter, C. D. J. Am. Chem. Soc. 2008, 130, 4906; (d) Leblanc, Y.; Roy, P.; Leger, S.; Grimm, E.; Wang, Z. WO 9841516, 1998[Chem. Abstr. 1998, 129, 275831].

    4. [4]

      (a) Walkowiak-Kulikowska, J.; Szwajca, A.; Boschet, F.; Gouverneur, V.; Ameduri, B. Macromolecules 2014, 47, 8634. (b) Kostov, G.; Tredwell, M.; Gouverneur, V.; Ameduri, B. J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 3843. (c) Wall, L. A. Fluoropolymers, Wiley, New York, 1972.

    5. [5]

      Hollingworth, C.; Hazari, A.; Hopkinson, M. N.; Tredwell, M.; Benedetto, E.; Huiban, M.; Gee, A. D.; Brown, J. M.; Gouverneur, V. Angew. Chem., Int. Ed. 2011, 50, 2613.  doi: 10.1002/anie.201007307

    6. [6]

      Walkowiak, J.; Martinez, D. C. T.; Ameduri, B.; Gouverneur, V. Synthesis 2010, 1883.
       

    7. [7]

      (a) Kirihara, M.; Kambayashi, T.; Momose, T. Chem. Commun. 1996, 1103; (b) Kirihara, M.; Kakuda, H.; Tsunooka, M.; Shimajiri, A.; Takuwa, T.; Hatano, A. Tetrahedron Lett. 2003, 44, 8513.

    8. [8]

      Hu, J. B.; He, Z. B. CN 102219638, 2011[Chem. Abstr. 2011, 155, 588760].

    9. [9]

      (a) He, Z. B.; Ping, T.; Hu, J. B. Org. Lett. 2016, 18, 72; (b) Ma, J. J.; Yi, W. B.; Lu, G. P.; Cai, C. Adv. Synth. Catal. 2015, 357, 3447. (c) Xu, X. L.; Chen, H. H.; He, J. B.; Xu, H. J. Chin. J. Chem. 2017, 35, 1665; (d) Montazerozohori, M.; Nasr-Esfahani, M.; Akhlaghi, P. Chin. J. Chem. 2009, 27, 1007; (e) Zhang, J. J.; Cheng, Y. B.; Duan, X. H. Chin. J. Chem. 2017, 35, 311; (f) Zhao, Y. W.; Feng, Q.; Song, Q. L. Chin. Chem. Lett. 2016, 27, 571.

    10. [10]

      (a) Chatalova-Sazepin, C.; Binayeva, M.; Epifanov, M.; Zhang, W.; Foth, P.; Amador, C.; Jagdeo, M.; Boswell, B. R.; Sammis, G. M. Org. Lett. 2016, 18, 4570; (b) Patrick, T. B.; Khazaeli, S.; Nadji, S.; Hering-Smith, K.; Reif, D. J. Org. Chem. 1993, 58, 705.

    11. [11]

      (a) Yin, F.; Wang, Z.; Li, Z.; Li, C. J. Am. Chem. Soc. 2012, 134, 10401; (b) Zhang, X. Comput. Theor. Chem. 2016, 1082, 11; (c) Zhang, Q. W.; Brusoe, A. T.; Mascitti, V.; Hesp, K. D.; Blakemore, D. C.; Kohrt, J. T.; Hartwig, J. F. Angew. Chem., Int. Ed. 2016, 55, 9758; (d) Mizuta, S.; Stenhagen, I. S. R.; O'Duill, M.; Wolstenhulme, J.; Kirjavainen, A. K.; Forsback, S. J.; Tredwell, M.; Sandford, G.; Moore, P. R.; Huiban, M.; Luthra, S. K.; Passchier, J.; Solin, O.; Gouverneur, V. Org. Lett. 2013, 15, 2648.

    12. [12]

      (a) Leung, J. C. T.; Chatalova-Sazepin, C.; West, J. G.; Rueda-Becerril, M.; Paquin, J. F.; Sammis, G. M. Angew. Chem., Int. Ed. 2012, 51, 10804; (b) Leung, J. C. T.; Sammis, G. M. Eur. J. Org. Chem. 2015, 2197; (c) Ventre, S.; Petronijevic, F. R.; MacMillan, D. W. C. J. Am. Chem. Soc. 2015, 137, 5654; (d) Wang, D. H.; Yuan, Z. L.; Liu, Q. L.; Chen, P. H. Liu, G. S. Chin. J. Chem. 2018, 36, 507; (e) Dong, Y.; Wang, Z.; Li, C. Nat. Commun. 2017, 8, 277.

    13. [13]

      Rueda-Becerril, M.; Chatalova Sazepin, C.; Leung, J. C. T.; Okbinoglu, T.; Kennepohl, P.; Paquin, J. F.; Sammis, G. M. J. Am. Chem. Soc. 2012, 134, 4026.  doi: 10.1021/ja211679v

    14. [14]

      Yang, Q.; Mao, L. L.; Yang, B.; Yang, S. D. Org. Lett. 2014, 16, 3460.  doi: 10.1021/ol501357w

    15. [15]

      (a) Fagnou, K.; Lautens, M. Angew. Chem. 2002, 114, 26; (b) Yan, N.; Lei, Z. W.; Su, J. K.; Liao, W. L. Hu, X. G. Chin. Chem. Lett. 2017, 28, 467; (c) Wang, L. Y.; Jiang, X. H.; Tang, P. P. Org. Chem. Front. 2017, 4, 1958.

    16. [16]

      (a) Katcher, M. H.; Sha, A.; Doyle, A. G. J. Am. Chem. Soc. 2011, 133, 15902; (b) Lee, E.; Hooker, J. M.; Ritter, T. J. Am. Chem. Soc. 2012, 134, 17456; (c) Fier, P. S.; Luo, J.; Hartwig, J. F. J. Am. Chem. Soc. 2013, 135, 2552; (d) Fier, P. S.; Hartwig, J. F. J. Am. Chem. Soc. 2012, 134, 10795; (e) Liu, Z.; Chen, H.; Lv, Y.; Tan, X.; Shen, H.; Yu, H.-Z.; Li, C. J. Am. Chem. Soc. 2018, 140, 6169; (f) Ma, J. A.; Li, S. Org. Chem. Front. 2014, 1, 712.

    17. [17]

      Woerly, E. M.; Banik, S. M.; Jacobsen, E. N. J. Am. Chem. Soc. 2016, 138, 13858.  doi: 10.1021/jacs.6b09499

    18. [18]

      Huang, X.; Liu, W.; Hooker, J. M.; Groves, J. T. Angew. Chem., Int. Ed. 2015, 54, 5241.  doi: 10.1002/anie.v54.17

    19. [19]

      (a) Souto, J. A.; Becker, P.; Iglesias, A.; Muñiz, K. J. Am. Chem. Soc. 2012, 134, 15505; (b) Souto, J. A.; Martínez, C.; Velilla, I.; Muñiz, K. Angew. Chem., Int. Ed. 2013, 52, 324; (c) Röben, C.; Souto, J. A.; Escudero-Adán, E. C.; Muñiz, K. Org. Lett. 2013, 15, 1008; (d) Farid, U.; Malmedy, F.; Claveau, R.; Albers, L.; Wirth, T. Angew. Chem., Int. Ed. 2013, 52, 7018; (e) Wang, Y.; Wang, Y.; Zhang, Q.; Li, D. Org. Chem. Front. 2017, 4, 514; (f) Gao, P.; Fan, M. J.; Bai, Z. J.; Wei, Y. Y. Chin. J. Chem. 2015, 33, 479.

    20. [20]

      (a) Kiyokawa, K.; Yahata, S.; Kojima, T.; Minakata, S. Org. Lett. 2014, 16, 4646; (b) Kiyokawa, K.; Kojima, T.; Hishikawa, Y.; Minakata, S. Chem. Eur. J. 2015, 21, 15548.

    21. [21]

      (a) Jiang, L. Q.; Qian, J. L.; Yi, W. B.; Lu, G. P.; Cai, C.; Zhang, W. Angew. Chem., Int. Ed. 2015, 54, 14965; (b) Lin, Y.-M.; Yi, W. B.; Shen, W. Z.; Lu, G. P. Org. Lett. 2016, 18, 592; (c) Song, Z. D.; Yi, W. B. Adv. Synth. Catal. 2016, 358, 2727.

    22. [22]

      (a) Kitamura, T.; Muta, K.; Kuriki, S. Tetrahedron Lett. 2013, 54, 6118; (b) Carpenter, W. J. Org. Chem. 1966, 31, 2688; (c) Zupan, M.; Pollak, A. J. Fluorine Chem. 1976, 7, 445; (d) Arrica, M. A.; Wirth, T. Eur. J. Org. Chem. 2005, 395; (e) Ye, C.; Twamley, B.; Shreeve, J. M. Org. Lett. 2005, 7, 3961.

    23. [23]

      Kitamura, T.; Muta, K.; Oyamada, J. J. Org. Chem. 2015, 80, 10431.  doi: 10.1021/acs.joc.5b01929

    24. [24]

      Nash, T. J.; Pattison, G. Eur. J. Org. Chem. 2015, 3779.
       

    25. [25]

      Li, Y.; Ni, C.; Liu, J.; Zhang, L.; Zheng, J.; Zhu, L.; Hu, J. B. Org. Lett. 2006, 8, 1693.  doi: 10.1021/ol060322t

    26. [26]

      (a) Fukuzumi, T.; Shibata, N.; Sugiura, M.; Yasui, H.; Nakamura, S.; Toru, T. Angew. Chem., Int. Ed. 2006, 45, 4973; (b) Furukawa, T.; Shibata, N.; Mizuta, S.; Nakamura, S.; Toru, T.; Shiro, M. Angew. Chem., Int. Ed. 2008, 47, 8051.

    27. [27]

      Prakash, G. K. S.; Ledneczki, I.; Chacko, S.; Olah, G. A. Org. Lett. 2008, 10, 557.  doi: 10.1021/ol702500u

    28. [28]

      Traff, A. M.; Janjetovic, M.; Ta, L.; Hilmersson, G. Angew. Chem., Int. Ed. 2013, 52, 12073.  doi: 10.1002/anie.201306104

    29. [29]

      (a) Yi, W. B.; Huang, X.; Zhang, Z.; Zhu, D.; Cai, C.; Zhang, W. Green Chem. 2012, 14, 3185; (b) Qian, J. L.; Yi, W. B.; Huang, X.; Miao, Y. B.; Zhang, J. K.; Cai, C.; Zhang, W. Org. Lett. 2015, 17, 1090; (c) Song, Z. D.; Huang, X.; Yi, W. B.; Zhang, W. Org. Lett. 2016, 18, 5640.

    30. [30]

      Benedetto, E.; Keita, M.; Tredwell, M.; Hollingworth, C.; Brown, J. M.; Gouverneur, V. Organometallics 2012, 31, 1408.
       

  • 加载中
    1. [1]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    2. [2]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    3. [3]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    4. [4]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    5. [5]

      Lin Ding Jinpeng Zhang Junfeng Li Daying Liu . Color Catcher: A Marvelous Encounter of Starch and Iodine. University Chemistry, 2024, 39(6): 334-341. doi: 10.3866/PKU.DXHX202311064

    6. [6]

      Zhongbin Pan Shijie Huang Yunjie Luo Hongzhen Xie . Design of a Comprehensive Experiment for Determining Permanganate Index (CODMn) in Drinking Water. University Chemistry, 2024, 39(7): 354-360. doi: 10.12461/PKU.DXHX202311040

    7. [7]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    8. [8]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    9. [9]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    10. [10]

      Fengmiao Yu Yang Sheng Chanyue Li Bao Li . The Three Lives of Aspirin. University Chemistry, 2024, 39(9): 115-121. doi: 10.12461/PKU.DXHX202402033

    11. [11]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

    12. [12]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    13. [13]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    14. [14]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    15. [15]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    16. [16]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    17. [17]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    18. [18]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    19. [19]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    20. [20]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

Metrics
  • PDF Downloads(10)
  • Abstract views(1427)
  • HTML views(198)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return