Citation: Song Zhidong, Jiang Lvqi, Yi Wenbin. Fluorodecarboxylation of β, γ-Unsaturated Carboxylic Acids Using Trivalent Iodine and Hydrofluoric Acid-Based Fluorination Reagent[J]. Acta Chimica Sinica, ;2018, 76(12): 967-971. doi: 10.6023/A18080321 shu

Fluorodecarboxylation of β, γ-Unsaturated Carboxylic Acids Using Trivalent Iodine and Hydrofluoric Acid-Based Fluorination Reagent

  • Corresponding author: Yi Wenbin, yiwb@njust.edu.cn
  • Received Date: 7 August 2018
    Available Online: 19 December 2018

    Fund Project: the National Natural Science Foundation of China 21476116Natural Science Foundation of Jiangsu Province BK20180476Priority Academic Program Development of Jiangsu Higher Education Institutions  the National Natural Science Foundation of China 21776138Fundamental Research Funds for the Central Universities 30916011102Fundamental Research Funds for the Central Universities 30918011314Qing Lan and Six Talent Peaks in Jiangsu Province  Project supported by the National Natural Science Foundation of China (Nos. 21776138, 21476116), Fundamental Research Funds for the Central Universities (Nos. 30916011102, 30918011314), Natural Science Foundation of Jiangsu Province (BK20180476), Qing Lan and Six Talent Peaks in Jiangsu Province, Priority Academic Program Development of Jiangsu Higher Education Institutions

Figures(5)

  • Allylic-substituted compounds serve as versatile building block or the primer for many metal-catalyzed reactions. The introduction of fluorine into a drug molecule will change its pharmacokinetic and pharmacodynamic properties. Therefore, a new method of allylic fluorination would uncover novel synthetic approaches towards highly valuable fluorinated compounds such as inhibitors or fluorine-containing polypropylene. To date, the most reported methods for the synthesis of allylic fluoride involve the use of p-nitrobenzoate or trimethylsilyl as leaving group, or cleavage of tertiary cyclopropyl silyl ethers. In the past decades, the research of fluorodecarboxylation has made great progress. The most reported fluorodecarboxylations involving XeF2, AgF or AgF2, Selectfluor, N-fluorodibenzenesulfonimide (NFSI) are often accompanied by the occurrence of oxidation or free radical reactions, which may destroy the terminal olefin structure. The use of the fluoride ion (fluoride salt or hydrofluoric acid) as the nucleophilic component presents a series of challenges, including the low intrinsic nucleophilicity which was demonstrated by its frequent use as an additive to modulate catalytic reactivity or product distribution. However, with the assistance of transition-metal catalyst or organocatalysts, fluoride ion often serve as fluorine source for fluorination of C(sp2)―H and C(sp3)―H. Hypervalent iodine reagents, which have ability to activate a C―C multiple bond, have been recognized as an alternative to noble metal catalyst. Inspired by the pioneering exploration, we sought the possibility of achieving allylic fluorination through simple protocol of fluorodecarboxylation with cheap nucleophilic fluorination reagents and mild oxidant. In this work, a new strategy is introduced for the synthesis of allylic fluorides via decarboxylative fluorination of β, γ-unsaturated carboxylic acids using PhI(OAc)2 and TEA·3HF. The best result was achieved by using 1.2 equiv. of PhI(OAc)2 and 5 equiv. of TEA·3HF in CH2Cl2 at 75 ℃ for 12 h, giving allylic fluoride 2a in 76% yield. The versatile synthetic utilities of the allylic fluorides were also developed through cycloaddition, oxidation, reduction, substitution involving formation of C―O, C―S, C―Se and C―N bond via activation of C―F bond.
  • 加载中
    1. [1]

      (a) Singh, O. V.; Han, H. Org. Lett. 2007, 9, 4801; (b) Mizuno, S.; Terasaki, S.; Shinozawa, T.; Kawatsura, M. Org. Lett. 2017, 19, 504. (c) Wu, R. H.; Yang, W.; Cheng, G.; Li, Y.; Yang, D. Q. Chinese J. Org. Chem. 2016, 36, 2368(in Chinese). (仵瑞华, 杨文, 程果, 李玥, 杨定乔, 有机化学, 2016, 36, 2368); (d) Chen, C. H.; Fu, L.; Chen, P. H.; Liu, G. S. Chin. J. Chem. 2017, 35, 1781; (e) Gu, Y.; Lu, C.; Gu, Y.; Shen, Q. Chin. J. Chem. 2018, 36, 55.

    2. [2]

      (a) Kirsch, P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications, Wiley-VCH, Weinheim, Germany, 2004; (b) Hiyama, T. Organofluorine Compounds: Chemistry and Applications, Springer, Berlin, 2000; (c) Uneyama, K. Organofluorine Chemistry, Blackwell, Oxford, U.K., 2006; (d) Richard, C. Fluorine in Organic Chemistry, CRC Press, Boca Raton, FL, 2004.

    3. [3]

      (a) Honda, T.; Liby, K. T.; Su, X.; Sundararajan, C.; Honda, Y.; Suh, N.; Risingsong, R.; Williams, C. R.; Royce, D. B.; Sporn, M. B.; Gribble, G. W. Bioorg. Med. Chem. Lett. 2006, 16, 6306; (b) Kaneko, S.; Arai, M.; Uchida, T.; Harasaki, T.; Fukuoka, T.; Konosu, T. Bioorg. Med. Chem. Lett. 2002, 12, 1705; (c) Rothman, S. C.; Johnston, J. B.; Lee, S.; Walker, J. R.; Poulter, C. D. J. Am. Chem. Soc. 2008, 130, 4906; (d) Leblanc, Y.; Roy, P.; Leger, S.; Grimm, E.; Wang, Z. WO 9841516, 1998[Chem. Abstr. 1998, 129, 275831].

    4. [4]

      (a) Walkowiak-Kulikowska, J.; Szwajca, A.; Boschet, F.; Gouverneur, V.; Ameduri, B. Macromolecules 2014, 47, 8634. (b) Kostov, G.; Tredwell, M.; Gouverneur, V.; Ameduri, B. J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 3843. (c) Wall, L. A. Fluoropolymers, Wiley, New York, 1972.

    5. [5]

      Hollingworth, C.; Hazari, A.; Hopkinson, M. N.; Tredwell, M.; Benedetto, E.; Huiban, M.; Gee, A. D.; Brown, J. M.; Gouverneur, V. Angew. Chem., Int. Ed. 2011, 50, 2613.  doi: 10.1002/anie.201007307

    6. [6]

      Walkowiak, J.; Martinez, D. C. T.; Ameduri, B.; Gouverneur, V. Synthesis 2010, 1883.
       

    7. [7]

      (a) Kirihara, M.; Kambayashi, T.; Momose, T. Chem. Commun. 1996, 1103; (b) Kirihara, M.; Kakuda, H.; Tsunooka, M.; Shimajiri, A.; Takuwa, T.; Hatano, A. Tetrahedron Lett. 2003, 44, 8513.

    8. [8]

      Hu, J. B.; He, Z. B. CN 102219638, 2011[Chem. Abstr. 2011, 155, 588760].

    9. [9]

      (a) He, Z. B.; Ping, T.; Hu, J. B. Org. Lett. 2016, 18, 72; (b) Ma, J. J.; Yi, W. B.; Lu, G. P.; Cai, C. Adv. Synth. Catal. 2015, 357, 3447. (c) Xu, X. L.; Chen, H. H.; He, J. B.; Xu, H. J. Chin. J. Chem. 2017, 35, 1665; (d) Montazerozohori, M.; Nasr-Esfahani, M.; Akhlaghi, P. Chin. J. Chem. 2009, 27, 1007; (e) Zhang, J. J.; Cheng, Y. B.; Duan, X. H. Chin. J. Chem. 2017, 35, 311; (f) Zhao, Y. W.; Feng, Q.; Song, Q. L. Chin. Chem. Lett. 2016, 27, 571.

    10. [10]

      (a) Chatalova-Sazepin, C.; Binayeva, M.; Epifanov, M.; Zhang, W.; Foth, P.; Amador, C.; Jagdeo, M.; Boswell, B. R.; Sammis, G. M. Org. Lett. 2016, 18, 4570; (b) Patrick, T. B.; Khazaeli, S.; Nadji, S.; Hering-Smith, K.; Reif, D. J. Org. Chem. 1993, 58, 705.

    11. [11]

      (a) Yin, F.; Wang, Z.; Li, Z.; Li, C. J. Am. Chem. Soc. 2012, 134, 10401; (b) Zhang, X. Comput. Theor. Chem. 2016, 1082, 11; (c) Zhang, Q. W.; Brusoe, A. T.; Mascitti, V.; Hesp, K. D.; Blakemore, D. C.; Kohrt, J. T.; Hartwig, J. F. Angew. Chem., Int. Ed. 2016, 55, 9758; (d) Mizuta, S.; Stenhagen, I. S. R.; O'Duill, M.; Wolstenhulme, J.; Kirjavainen, A. K.; Forsback, S. J.; Tredwell, M.; Sandford, G.; Moore, P. R.; Huiban, M.; Luthra, S. K.; Passchier, J.; Solin, O.; Gouverneur, V. Org. Lett. 2013, 15, 2648.

    12. [12]

      (a) Leung, J. C. T.; Chatalova-Sazepin, C.; West, J. G.; Rueda-Becerril, M.; Paquin, J. F.; Sammis, G. M. Angew. Chem., Int. Ed. 2012, 51, 10804; (b) Leung, J. C. T.; Sammis, G. M. Eur. J. Org. Chem. 2015, 2197; (c) Ventre, S.; Petronijevic, F. R.; MacMillan, D. W. C. J. Am. Chem. Soc. 2015, 137, 5654; (d) Wang, D. H.; Yuan, Z. L.; Liu, Q. L.; Chen, P. H. Liu, G. S. Chin. J. Chem. 2018, 36, 507; (e) Dong, Y.; Wang, Z.; Li, C. Nat. Commun. 2017, 8, 277.

    13. [13]

      Rueda-Becerril, M.; Chatalova Sazepin, C.; Leung, J. C. T.; Okbinoglu, T.; Kennepohl, P.; Paquin, J. F.; Sammis, G. M. J. Am. Chem. Soc. 2012, 134, 4026.  doi: 10.1021/ja211679v

    14. [14]

      Yang, Q.; Mao, L. L.; Yang, B.; Yang, S. D. Org. Lett. 2014, 16, 3460.  doi: 10.1021/ol501357w

    15. [15]

      (a) Fagnou, K.; Lautens, M. Angew. Chem. 2002, 114, 26; (b) Yan, N.; Lei, Z. W.; Su, J. K.; Liao, W. L. Hu, X. G. Chin. Chem. Lett. 2017, 28, 467; (c) Wang, L. Y.; Jiang, X. H.; Tang, P. P. Org. Chem. Front. 2017, 4, 1958.

    16. [16]

      (a) Katcher, M. H.; Sha, A.; Doyle, A. G. J. Am. Chem. Soc. 2011, 133, 15902; (b) Lee, E.; Hooker, J. M.; Ritter, T. J. Am. Chem. Soc. 2012, 134, 17456; (c) Fier, P. S.; Luo, J.; Hartwig, J. F. J. Am. Chem. Soc. 2013, 135, 2552; (d) Fier, P. S.; Hartwig, J. F. J. Am. Chem. Soc. 2012, 134, 10795; (e) Liu, Z.; Chen, H.; Lv, Y.; Tan, X.; Shen, H.; Yu, H.-Z.; Li, C. J. Am. Chem. Soc. 2018, 140, 6169; (f) Ma, J. A.; Li, S. Org. Chem. Front. 2014, 1, 712.

    17. [17]

      Woerly, E. M.; Banik, S. M.; Jacobsen, E. N. J. Am. Chem. Soc. 2016, 138, 13858.  doi: 10.1021/jacs.6b09499

    18. [18]

      Huang, X.; Liu, W.; Hooker, J. M.; Groves, J. T. Angew. Chem., Int. Ed. 2015, 54, 5241.  doi: 10.1002/anie.v54.17

    19. [19]

      (a) Souto, J. A.; Becker, P.; Iglesias, A.; Muñiz, K. J. Am. Chem. Soc. 2012, 134, 15505; (b) Souto, J. A.; Martínez, C.; Velilla, I.; Muñiz, K. Angew. Chem., Int. Ed. 2013, 52, 324; (c) Röben, C.; Souto, J. A.; Escudero-Adán, E. C.; Muñiz, K. Org. Lett. 2013, 15, 1008; (d) Farid, U.; Malmedy, F.; Claveau, R.; Albers, L.; Wirth, T. Angew. Chem., Int. Ed. 2013, 52, 7018; (e) Wang, Y.; Wang, Y.; Zhang, Q.; Li, D. Org. Chem. Front. 2017, 4, 514; (f) Gao, P.; Fan, M. J.; Bai, Z. J.; Wei, Y. Y. Chin. J. Chem. 2015, 33, 479.

    20. [20]

      (a) Kiyokawa, K.; Yahata, S.; Kojima, T.; Minakata, S. Org. Lett. 2014, 16, 4646; (b) Kiyokawa, K.; Kojima, T.; Hishikawa, Y.; Minakata, S. Chem. Eur. J. 2015, 21, 15548.

    21. [21]

      (a) Jiang, L. Q.; Qian, J. L.; Yi, W. B.; Lu, G. P.; Cai, C.; Zhang, W. Angew. Chem., Int. Ed. 2015, 54, 14965; (b) Lin, Y.-M.; Yi, W. B.; Shen, W. Z.; Lu, G. P. Org. Lett. 2016, 18, 592; (c) Song, Z. D.; Yi, W. B. Adv. Synth. Catal. 2016, 358, 2727.

    22. [22]

      (a) Kitamura, T.; Muta, K.; Kuriki, S. Tetrahedron Lett. 2013, 54, 6118; (b) Carpenter, W. J. Org. Chem. 1966, 31, 2688; (c) Zupan, M.; Pollak, A. J. Fluorine Chem. 1976, 7, 445; (d) Arrica, M. A.; Wirth, T. Eur. J. Org. Chem. 2005, 395; (e) Ye, C.; Twamley, B.; Shreeve, J. M. Org. Lett. 2005, 7, 3961.

    23. [23]

      Kitamura, T.; Muta, K.; Oyamada, J. J. Org. Chem. 2015, 80, 10431.  doi: 10.1021/acs.joc.5b01929

    24. [24]

      Nash, T. J.; Pattison, G. Eur. J. Org. Chem. 2015, 3779.
       

    25. [25]

      Li, Y.; Ni, C.; Liu, J.; Zhang, L.; Zheng, J.; Zhu, L.; Hu, J. B. Org. Lett. 2006, 8, 1693.  doi: 10.1021/ol060322t

    26. [26]

      (a) Fukuzumi, T.; Shibata, N.; Sugiura, M.; Yasui, H.; Nakamura, S.; Toru, T. Angew. Chem., Int. Ed. 2006, 45, 4973; (b) Furukawa, T.; Shibata, N.; Mizuta, S.; Nakamura, S.; Toru, T.; Shiro, M. Angew. Chem., Int. Ed. 2008, 47, 8051.

    27. [27]

      Prakash, G. K. S.; Ledneczki, I.; Chacko, S.; Olah, G. A. Org. Lett. 2008, 10, 557.  doi: 10.1021/ol702500u

    28. [28]

      Traff, A. M.; Janjetovic, M.; Ta, L.; Hilmersson, G. Angew. Chem., Int. Ed. 2013, 52, 12073.  doi: 10.1002/anie.201306104

    29. [29]

      (a) Yi, W. B.; Huang, X.; Zhang, Z.; Zhu, D.; Cai, C.; Zhang, W. Green Chem. 2012, 14, 3185; (b) Qian, J. L.; Yi, W. B.; Huang, X.; Miao, Y. B.; Zhang, J. K.; Cai, C.; Zhang, W. Org. Lett. 2015, 17, 1090; (c) Song, Z. D.; Huang, X.; Yi, W. B.; Zhang, W. Org. Lett. 2016, 18, 5640.

    30. [30]

      Benedetto, E.; Keita, M.; Tredwell, M.; Hollingworth, C.; Brown, J. M.; Gouverneur, V. Organometallics 2012, 31, 1408.
       

  • 加载中
    1. [1]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    2. [2]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    3. [3]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    4. [4]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    5. [5]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    6. [6]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    7. [7]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    8. [8]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    9. [9]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    12. [12]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    13. [13]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    14. [14]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    15. [15]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    16. [16]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    17. [17]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

Metrics
  • PDF Downloads(10)
  • Abstract views(1390)
  • HTML views(197)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return